Gottfried Helms has authored 48 sequences. Here are the ten most recent ones:
A207079
The only nonunique differences between powers of 3 and 2.
Original entry on oeis.org
1, 5, 7, 13, 23
Offset: 1
A184011
Coefficients of the formal power series of a half-iterate of exp(x)-1 (rescaled).
Original entry on oeis.org
0, 1, 2, 2, 0, 8, -56, 32, 10176, -215808, -78784, 150990912, -3405688576, -139041794560, 10385778676736, 130003936220160, -43016304236761088, 526545841919713280, 266085261164348628992, -12347306589339686547456
Offset: 0
f(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + O(x^8)
so c_3 = 1/48
and a(3) = c_3 * 4^2*3! = 16*6/48 = 2
- Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.
-
max = 19; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[f[f[x]] - Exp[x] - 1, {x, 0, max}], x]; sol = Solve[Thread[coes == 0] // Rest] // First; Table[c[n]*4^(n-1)*n!, {n, 0, max}] /. sol (* Jean-François Alcover, Feb 11 2013 *)
-
{a(n)=local(A=x+x^2,B=x);for(i=1,n,B=serreverse(A+x*O(x^n));A=(A+exp(B)-1)/2);4^(n-1)*n!*polcoeff(A,n)} \\ Paul D. Hanna
-
{trisqrt(m) = local(tmp, rs=rows(m), cs=cols(m), c);
\\ computes sqrt of lower triangular matrix with unit-diagonal
tmp=matid(#m);
for(d=1,rs-1,
for(r=d+1,rs,
c=r-d;
tmp[r,c]=(m[r,c]-sum(k=c+1,r-1,tmp[r,k]*tmp[k,c]))
/(tmp[c,c]+tmp[r,r])
);
);
return(tmp);}
ff = exp(x)-1
Mff = matrix(6,6,r,c,polcoeff(ff^(c-1),(r-1))) \\ create Bell-matrix for ff
Mf = trisqrt ( Mff ) \\ = Mff^(1/2) is Bellmatrix for f
f = Ser(Mf[,2]) \\ coefficients of power series for half-iterate of exp(x)-1 from second column in Mf
A136248
Triangle H4 read by rows: see link for definition.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 4, 6, 4, 3, 1, 1, 7, 13, 26, 31, 31, 25, 13, 6, 1, 1, 15, 40, 100, 171, 220, 255, 215, 156, 85, 35, 10, 1
Offset: 1
Triangle begins:
1
1 1 1 1
1 3 4 6 4 3 1
1 7 13 26 31 31 25 13 6 1
1 15 40 100 171 220 255 215 156 85 35 10 1
A136206
Triangle H(n,j) (n=1,2,3,..., j=2,3,4,...) read by rows: let X(k,l,n) := Stirling2(n,k)*Stirling2(k,l) for 1<=k<=n and 1<=l<=k. Then H(n,j)= sum_{k+l=j, 1<=k<=n and 1<=l<=k} X(k,l,n).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 7, 13, 19, 13, 6, 1, 1, 15, 40, 85, 96, 75, 35, 10, 1, 1, 31, 121, 335, 560, 616, 471, 240, 80, 15, 1, 1, 63, 364, 1253, 2891, 4221, 4502, 3353, 1806, 665, 161, 21, 1, 1, 127, 1093, 4599, 13923, 26222, 36225, 36205, 26895, 14756, 5887, 1638, 294, 28, 1
Offset: 1
Triangle begins:
..........................1
.....................1....1....1
................1....3....4....3....1
...........1....7...13...19...13....6...1
......1...15...40...85...96...75...35..10..1
..1..31..121..335..560..616..471..240..80..15..1
.................................................
Assume a matrix-function rowshift(M) which computes M1 = rowshift(M) in the following way: M =
[a,b,c,...]
[k,l,m,...]
[r,s,t,...]
[.........]
becomes M1 =
[a,b,c, ......]
[0,k,l,m, ....]
[0,0,r,s,t,...]
[ ............]
Define the lower-triangular matrix of Stirling-numbers of the second kind S =
[1 0 0 0 ...]
[1 1 0 0 ...]
[1 3 1 0 ...]
[1 7 6 1 ...]
[ ..........]
Then with H0 =
[1]
[1]
[1]
[1]
...
we have
H1 = S * rowshift(H0) \\ = S
H2 = S * rowshift(H1)
H3 = S * rowshift(H2)
...
H1 =
1 . . . .
1 1 . . .
1 3 1 . .
1 7 6 1 .
1 15 25 10 1
H2=
1 . . . . . . . .
1 1 1 . . . . . .
1 3 4 3 1 . . . .
1 7 13 19 13 6 1 . .
1 15 40 85 96 75 35 10 1
H3=
1 . . . . . . . . . . . .
1 1 1 1 . . . . . . . . .
1 3 4 6 4 3 1 . . . . . .
1 7 13 26 31 31 25 13 6 1 . . .
1 15 40 100 171 220 255 215 156 85 35 10 1
(based on the Maple implementation from _R. J. Mathar_)
-
# From R. J. Mathar: (Start)
X := proc(k,l,n)
if k >=1 and k <=n and l >=1 and l <= n then
combinat[stirling2](n,k)*combinat[stirling2](k,l) ;
else
0 ;
fi ;
end:
H := proc(n,j)
add( X(j-l,l,n),l=1..floor(j/2)) ;
end:
for n from 1 to 10 do
for j from 2 to 2*n do
printf("%d ",H(n,j)) ;
od:
printf("\n") ;
od:
# (End)
Definition in terms of Stirling2 numbers found by
R. J. Mathar, Apr 15 2008
A129323
Second column of PE^2.
Original entry on oeis.org
0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129323 := proc(n) A078937(n+1,1) ; end: seq(A129323(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 2], {i, 0, n}], {n, -1, 20}] (* Zerinvary Lajos, Jul 16 2009 *)
A129327
Second column of PE^3.
Original entry on oeis.org
0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129327 := proc(n) A078938(n+1,1) ; end: seq(A129327(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 3], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129331
Second column of PE^4.
Original entry on oeis.org
0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129331 := proc(n) A078939(n+1,1) ; end: seq(A129331(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 4], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129325
Fourth column of PE^2.
Original entry on oeis.org
0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129325 := proc(n) A078937(n+1,3) ; end: seq(A129325(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 3];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
-
m=matpascal(30)-matid(31); pe=matid(31)+sum(i=1,30,m^i/i!); A=pe^2; A[,4] \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
More terms from
R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A129328
Third column of PE^3.
Original entry on oeis.org
0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129328 := proc(n) A078938(n+1,2) ; end: seq(A129328(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 2];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129332
Third column of PE^4.
Original entry on oeis.org
0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129332 := proc(n) A078939(n+1,2) ; end: seq(A129332(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078939[n + 1, 2];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Comments