cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gottfried Helms

Gottfried Helms's wiki page.

Gottfried Helms has authored 48 sequences. Here are the ten most recent ones:

A207079 The only nonunique differences between powers of 3 and 2.

Original entry on oeis.org

1, 5, 7, 13, 23
Offset: 1

Author

Gottfried Helms, Feb 15 2012

Keywords

Comments

The sequence is finite, this fact is a theorem in [Bennet2004].
1 = 3-2 = 3^2-2^3 = 2^2-3.
5 = 3^2-2^2 = 2^3-3 = 2^5 - 3^3.
7 = 2^4-3^2 = 3^2 - 2.
13 = 2^4-3 = 2^8 - 3^5.
23 = 3^3 - 2^2 = 2^5 - 3^2.

Crossrefs

Formula

A219551(a(n)) > 1. - Jonathan Sondow, Dec 10 2012

A184011 Coefficients of the formal power series of a half-iterate of exp(x)-1 (rescaled).

Original entry on oeis.org

0, 1, 2, 2, 0, 8, -56, 32, 10176, -215808, -78784, 150990912, -3405688576, -139041794560, 10385778676736, 130003936220160, -43016304236761088, 526545841919713280, 266085261164348628992, -12347306589339686547456
Offset: 0

Author

Gottfried Helms, Feb 13 2011

Keywords

Comments

Consider the formal power series for the real half-iterate of exp(x)-1 = Sum_{k>=0} c_k*x^k with c_1 = +1 then a(k) = c_k*k!*4^{k-1} and all a(k) seem to be integers.
For the general technique of finding the half-iterate of power series, see for instance the Comtet reference.

Examples

			f(x) = x + 1/4*x^2 + 1/48*x^3 + 1/3840*x^5 - 7/92160*x^6 + 1/645120*x^7 + O(x^8)
so   c_3  = 1/48
and  a(3) = c_3 * 4^2*3! = 16*6/48 = 2
		

References

  • Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.

Crossrefs

Programs

  • Mathematica
    max = 19; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[f[f[x]] - Exp[x] - 1, {x, 0, max}], x]; sol = Solve[Thread[coes == 0] // Rest] // First; Table[c[n]*4^(n-1)*n!, {n, 0, max}] /. sol (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    {a(n)=local(A=x+x^2,B=x);for(i=1,n,B=serreverse(A+x*O(x^n));A=(A+exp(B)-1)/2);4^(n-1)*n!*polcoeff(A,n)} \\ Paul D. Hanna
    
  • PARI
    {trisqrt(m) = local(tmp, rs=rows(m), cs=cols(m), c);
    \\ computes sqrt of lower triangular matrix with unit-diagonal
       tmp=matid(#m);
       for(d=1,rs-1,
            for(r=d+1,rs,
                  c=r-d;
                  tmp[r,c]=(m[r,c]-sum(k=c+1,r-1,tmp[r,k]*tmp[k,c]))
                            /(tmp[c,c]+tmp[r,r])
               );
          );
    return(tmp);}
    ff = exp(x)-1
    Mff = matrix(6,6,r,c,polcoeff(ff^(c-1),(r-1))) \\ create Bell-matrix for ff
    Mf =  trisqrt ( Mff )  \\ = Mff^(1/2) is Bellmatrix for f
    f = Ser(Mf[,2])  \\ coefficients of power series for half-iterate of exp(x)-1 from second column in Mf

Formula

G.f. f(x) where f(f(x)) = exp(x)-1 with f'(0)=1.
T(n,m) = if n=m then 1 else (stirling2(n,m)*m!/n!-sum(i=m+1..n-1, T(n,i)*T(i,m)))/2; a(n) = 4^(n-1)*n!*T(n,1). - Vladimir Kruchinin, Nov 09 2011
E.g.f. A(x), satisfies A(A(x))=(exp(4*x)-1)/4, T(n,m)=1/2*(4^(n-m)*stirling2(n,m)-sum(i=m+1..n-1, T(n,i)*T(i,m))), T(n,n)=1, a(n)=T(n,1), a(0)=0. - Dmitry Kruchinin, Dec 04 2012
a(n) = A052122(n) * 2^(2*n - 2 - A052123(n)). - Andrey Zabolotskiy, Aug 22 2022

A136248 Triangle H4 read by rows: see link for definition.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 6, 4, 3, 1, 1, 7, 13, 26, 31, 31, 25, 13, 6, 1, 1, 15, 40, 100, 171, 220, 255, 215, 156, 85, 35, 10, 1
Offset: 1

Author

Gottfried Helms, Apr 16 2008

Keywords

Comments

Row n has 3n+1 terms.

Examples

			Triangle begins:
1
1 1 1 1
1 3 4 6 4 3 1
1 7 13 26 31 31 25 13 6 1
1 15 40 100 171 220 255 215 156 85 35 10 1
		

A136206 Triangle H(n,j) (n=1,2,3,..., j=2,3,4,...) read by rows: let X(k,l,n) := Stirling2(n,k)*Stirling2(k,l) for 1<=k<=n and 1<=l<=k. Then H(n,j)= sum_{k+l=j, 1<=k<=n and 1<=l<=k} X(k,l,n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 7, 13, 19, 13, 6, 1, 1, 15, 40, 85, 96, 75, 35, 10, 1, 1, 31, 121, 335, 560, 616, 471, 240, 80, 15, 1, 1, 63, 364, 1253, 2891, 4221, 4502, 3353, 1806, 665, 161, 21, 1, 1, 127, 1093, 4599, 13923, 26222, 36225, 36205, 26895, 14756, 5887, 1638, 294, 28, 1
Offset: 1

Author

Gottfried Helms, Apr 15 2008

Keywords

Comments

Row n has 2n-1 terms. The row sums are given by A000258.

Examples

			Triangle begins:
..........................1
.....................1....1....1
................1....3....4....3....1
...........1....7...13...19...13....6...1
......1...15...40...85...96...75...35..10..1
..1..31..121..335..560..616..471..240..80..15..1
.................................................
Assume a matrix-function rowshift(M) which computes M1 = rowshift(M) in the following way: M =
[a,b,c,...]
[k,l,m,...]
[r,s,t,...]
[.........]
becomes M1 =
[a,b,c, ......]
[0,k,l,m, ....]
[0,0,r,s,t,...]
[ ............]
Define the lower-triangular matrix of Stirling-numbers of the second kind S =
[1 0 0 0 ...]
[1 1 0 0 ...]
[1 3 1 0 ...]
[1 7 6 1 ...]
[ ..........]
Then with H0 =
[1]
[1]
[1]
[1]
...
we have
H1 = S * rowshift(H0) \\ = S
H2 = S * rowshift(H1)
H3 = S * rowshift(H2)
...
H1 =
1 . . . .
1 1 . . .
1 3 1 . .
1 7 6 1 .
1 15 25 10 1
H2=
1 . . . . . . . .
1 1 1 . . . . . .
1 3 4 3 1 . . . .
1 7 13 19 13 6 1 . .
1 15 40 85 96 75 35 10 1
H3=
1 . . . . . . . . . . . .
1 1 1 1 . . . . . . . . .
1 3 4 6 4 3 1 . . . . . .
1 7 13 26 31 31 25 13 6 1 . . .
1 15 40 100 171 220 255 215 156 85 35 10 1
(based on the Maple implementation from _R. J. Mathar_)
		

Crossrefs

Cf. A136248.

Programs

  • Maple
    # From R. J. Mathar: (Start)
    X := proc(k,l,n)
    if k >=1 and k <=n and l >=1 and l <= n then
    combinat[stirling2](n,k)*combinat[stirling2](k,l) ;
    else
    0 ;
    fi ;
    end:
    H := proc(n,j)
    add( X(j-l,l,n),l=1..floor(j/2)) ;
    end:
    for n from 1 to 10 do
    for j from 2 to 2*n do
    printf("%d ",H(n,j)) ;
    od:
    printf("\n") ;
    od:
    # (End)

Extensions

Definition in terms of Stirling2 numbers found by R. J. Mathar, Apr 15 2008

A129323 Second column of PE^2.

Original entry on oeis.org

0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,2] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129327 Second column of PE^3.

Original entry on oeis.org

0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129331 Second column of PE^4.

Original entry on oeis.org

0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129325 Fourth column of PE^2.

Original entry on oeis.org

0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,4] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,4]

Extensions

More terms from R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008

A129328 Third column of PE^3.

Original entry on oeis.org

0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129332 Third column of PE^4.

Original entry on oeis.org

0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008