A001861
Expansion of e.g.f. exp(2*(exp(x) - 1)).
Original entry on oeis.org
1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0
a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..558 (terms 0..100 from T. D. Noe)
- M. Aigner, A characterization of the Bell numbers, Discr. Math., 205 (1999), 207-210.
- Michael Anshelevich, Product formulas on posets, Wick products, and a correction for the q-Poisson process, arXiv:1708.08034 [math.OA], 2017, See Proposition 34 p. 25.
- Diego Arcis, Camilo González, and Sebastián Márquez, Symmetric functions in noncommuting variables in superspace, arXiv:2312.00574 [math.CO], 2023.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
- Jacques Carlier and Corinne Lucet, A decomposition algorithm for network reliability evaluation. In First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz). Discrete Appl. Math. 65 (1996), 141-156 (see page 152 and Fig 6).
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- Wan-Ming Guo and Lily Li Liu, Asymptotic normality of the Stirling-Whitney-Riordan triangle, Filomat (2023) Vol. 37, No. 9, 2923-2934.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 66 [broken link?]
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- G. Labelle et al., Stirling numbers interpolation using permutations with forbidden subsequences, Discrete Math. 246 (2002), 177-195.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 20.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- J. Riordan, Letter to N. J. A. Sloane, Oct. 1970
- J. Riordan, Letter, Oct 31 1977
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1. - From _N. J. A. Sloane_, Jan 04 2013
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Cf.
A000110,
A000587,
A002871,
A027710,
A056857,
A068199,
A068200,
A068201,
A078937,
A078938,
A078944,
A078945,
A109128,
A129323,
A129324,
A129325,
A129327,
A129328,
A129329,
A129331,
A129332,
A129333,
A144180,
A144223,
A144263,
A189233,
A213170,
A221159,
A221176.
-
[&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
-
A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
# second Maple program:
b:= proc(n, m) option remember;
`if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 04 2021
-
Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
-
{a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
-
{a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
-
expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
A027710
Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.
Original entry on oeis.org
1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643, 48718569, 447428856, 4318854429, 43666895343, 461101962108, 5072054649573, 57986312752497, 687610920335610, 8442056059773267, 107135148331162767, 1403300026585387686, 18946012544520590991
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
Cf.
A000110,
A001861,
A056857,
A078937,
A078938,
A078940,
A078944,
A078945,
A129323,
A129324,
A129325,
A129327,
A129328,
A129329,
A129331,
A129332,
A129333,
A144180,
A144223,
A144263,
A189233,
A221159,
A221176.
-
b:= proc(n, m) option remember; `if`(n=0,
1, m*b(n-1, m)+3*b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Aug 03 2021
-
colors=3; Array[ bell, 25 ]; For[ x=1, x<=25, x++, bell[ x ]=0 ]; bell[ 1 ]=colors;
Print[ "1 ", colors ]; For[ n=2, n<=25, n++, bell[ n ]=colors*bell[ n-1 ];
For[ i=1, n-i>1, i++, bell[ n-i ]=bell[ n-i ]*(n-i)+colors*bell[ n-i-1 ] ];
bellsum=0; For[ t=0, tVaclav Kotesovec, Mar 12 2014 *)
-
a(n)=if(n<0,0,n!*polcoeff(exp(3*(exp(x+x*O(x^n))-1)),n))
-
from sage.combinat.expnums import expnums2
expnums(22, 3) # Zerinvary Lajos, Jun 26 2008
A078944
First column of A078939, the fourth power of lower triangular matrix A056857.
Original entry on oeis.org
1, 4, 20, 116, 756, 5428, 42356, 355636, 3188340, 30333492, 304716148, 3218555700, 35618229364, 411717043252, 4957730174836, 62045057731892, 805323357485684, 10820999695801908, 150271018666120564, 2153476417340487476
Offset: 0
Cf.
A000110,
A001861,
A027710,
A056857,
A078937,
A078938,
A078939,
A078944,
A078945,
A129323,
A129324,
A129325,
A129327,
A129328,
A129329,
A129331,
A129332,
A129333,
A144180,
A144223,
A144263,
A189233,
A221159,
A221176.
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A078944 := proc(n) A078939(n+1,0) ; end: seq(A078944(n),n=0..25) ; # R. J. Mathar, May 30 2008
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 4^m,
add(b(n-1, max(m, j)), j=1..m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 03 2021
-
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4), {x, 0, 20}], x]
Table[BellB[n,4],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
With[{nn=20},CoefficientList[Series[Exp[4(Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 03 2022 *)
-
expnums(20, 4) # Zerinvary Lajos, Jun 26 2008
A078937
Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 22, 18, 6, 1, 94, 88, 36, 8, 1, 454, 470, 220, 60, 10, 1, 2430, 2724, 1410, 440, 90, 12, 1, 14214, 17010, 9534, 3290, 770, 126, 14, 1, 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1, 610182, 809262, 511704, 204120, 57204, 11844, 1848, 216, 18, 1
Offset: 0
[0] 1;
[1] 2, 1;
[2] 6, 4, 1;
[3] 22, 18, 6, 1;
[4] 94, 88, 36, 8, 1;
[5] 454, 470, 220, 60, 10, 1;
[6] 2430, 2724, 1410, 440, 90, 12, 1;
[7] 14214, 17010, 9534, 3290, 770, 126, 14, 1;
[8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
-
# Computes triangle as a matrix M(dim, p).
# A023531 (p=0), A056857 (p=1), this sequence (p=2), A078938 (p=3), ...
with(LinearAlgebra): M := (n, p) -> local j,k; MatrixPower(subs(exp(1) = 1,
MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0),
k = 0..n-1), j = 0..n-1)])))), p): M(8, 2); # Peter Luschny, Mar 28 2024
-
k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1,k,m^j/j!); A=pe^2; A /* Gottfried Helms, Apr 08 2007; amended by Georg Fischer Mar 28 2024 */
A078938
Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).
Original entry on oeis.org
1, 3, 1, 12, 6, 1, 57, 36, 9, 1, 309, 228, 72, 12, 1, 1866, 1545, 570, 120, 15, 1, 12351, 11196, 4635, 1140, 180, 18, 1, 88563, 86457, 39186, 10815, 1995, 252, 21, 1, 681870, 708504, 345828, 104496, 21630, 3192, 336, 24, 1, 5597643, 6136830, 3188268
Offset: 0
Rows:
1,
3,1,
12,6,1,
57,36,9,1,
309,228,72,12,1,
1866,1545,570,120,15,1,
12351,11196,4635,1140,180,18,1,
...
A129323
Second column of PE^2.
Original entry on oeis.org
0, 1, 4, 18, 88, 470, 2724, 17010, 113712, 809262, 6101820, 48540778, 405935688, 3557404838, 32577733972, 310987560930, 3087723669600, 31823217868318, 339845199259500, 3754422961010522, 42843681016834680, 504339820818380694
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129323 := proc(n) A078937(n+1,1) ; end: seq(A129323(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 2], {i, 0, n}], {n, -1, 20}] (* Zerinvary Lajos, Jul 16 2009 *)
A129324
Third column of PE^2.
Original entry on oeis.org
0, 0, 1, 6, 36, 220, 1410, 9534, 68040, 511704, 4046310, 33560010, 291244668, 2638581972, 24901833866, 244333004790, 2487900487440, 26245651191600, 286408960814862, 3228529392965250, 37544229610105220, 449858650676764140
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129324 := proc(n) A078937(n+1,2) ; end: seq(A129324(n),n=0..23) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 2];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129325
Fourth column of PE^2.
Original entry on oeis.org
0, 0, 0, 1, 8, 60, 440, 3290, 25424, 204120, 1705680, 14836470, 134240040, 1262060228, 12313382536, 124509169330, 1303109358880, 14098102762160, 157473907149600, 1813923418494126, 21523529286435000, 262809607270736540
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A129325 := proc(n) A078937(n+1,3) ; end: seq(A129325(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078937[n + 1, 3];
a /@ Range[0, 21] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
-
m=matpascal(30)-matid(31); pe=matid(31)+sum(i=1,30,m^i/i!); A=pe^2; A[,4] \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
More terms from
R. J. Mathar and Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
A129327
Second column of PE^3.
Original entry on oeis.org
0, 1, 6, 36, 228, 1545, 11196, 86457, 708504, 6136830, 55976430, 535904259, 5369146272, 56145107577, 611336534802, 6916529431620, 81152874393168, 985767316792449, 12376996566040980, 160399065135692073
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129327 := proc(n) A078938(n+1,1) ; end: seq(A129327(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 3], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129328
Third column of PE^3.
Original entry on oeis.org
0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129328 := proc(n) A078938(n+1,2) ; end: seq(A129328(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 2];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Showing 1-10 of 13 results.
Comments