A000587 Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0
Examples
G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
References
- N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
- Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..595 (first 101 terms from T. D. Noe)
- M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras, 2014. See Example 31. - _N. J. A. Sloane_, May 24 2014
- W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2 (15 August 2014), Pages 672-682.
- Tewodros Amdeberhan, Valerio de Angelis and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq., Vol. 13 (2010), Article 10.9.7.
- R. E. Beard, On the Coefficients in the Expansion of e^(e^t) and e^(-e^t), J. Institute of Actuaries, Vol. 76 (1950), pp. 152-163. [Annotated scanned copy]
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- Valerio De Angelis and Dominic Marcello, Wilf's Conjecture, The American Mathematical Monthly, Vol. 123, No. 6 (2016), pp. 557-573.
- S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
- Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
- Branko Dragovich, Andrei Yu. Khrennikov, and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
- B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 6, Issue 4 (October 2014), pp. 275-283.
- Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum, Vol. 25, No. 5 (1999), pp. 274-281.
- B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Vol. 12 (1968), pp. 264-277.
- M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, Vol. 110, No. 6 (2003), pp. 527-532.
- M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See the first two columns of the table on p. 9.)
- Vaclav Kotesovec, Plot of |a(n)/n!|^(1/n) / |exp(1/W(-n))/W(-n)| for n = 1..40000, where W is the LambertW function.
- Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. See p. 617.
- J. W. Layman and C. L. Prather, Generalized Bell numbers and zeros of successive derivatives of an entire function, Journal of Mathematical Analysis and Applications, Volume 96, Issue 1 (15 October 1983), Pages 42-51.
- Toufik Mansour and Mark Shattuck, Counting subword patterns in permutations arising as flattened partitions of sets, Appl. Anal. Disc. Math. (2022), OnLine-First (00):9-9.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- S. Ramanujan, Notebook entry.
- V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart., Vol. 7, No. 4 (1969), pp. 437-448.
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16 (October 2012), Pages 236-248. [_N. J. A. Sloane_, Oct 03 2012]
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011), Article 11.9.7.
- D. Subedi, Complementary Bell Numbers and p-adic Series, J. Int. Seq., Vol. 17 (2014), Article 14.3.1.
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Complementary Bell Number.
- D. Wuilquin, Letters to N. J. A. Sloane, August 1984.
- Yifan Yang, On a multiplicative partition function, Electron. J. Combin., Vol. 8, No. 1 (2001), Research Paper 19.
Programs
-
Haskell
a000587 n = a000587_list !! n a000587_list = 1 : f a007318_tabl [1] where f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs) -- Reinhard Zumkeller, Mar 04 2014
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..35); # Alois P. Heinz, Jun 28 2016
-
Mathematica
Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ] With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *) a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *) Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *) b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
-
PARI
{a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
-
PARI
Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
-
PARI
a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!)) vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
-
PARI
x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
-
Python
# The objective of this implementation is efficiency. # n -> [a(0), a(1), ..., a(n)] for n > 0. def A000587_list(n): A = [0 for i in range(n)] A[n-1] = 1 R = [1] for j in range(0, n): A[n-1-j] = -A[n-1] for k in range(n-j, n): A[k] += A[k-1] R.append(A[n-1]) return R # Peter Luschny, Apr 18 2011
-
Python
# Python 3.2 or higher required from itertools import accumulate A000587, blist, b = [1,-1], [1], -1 for _ in range(30): blist = list(accumulate([b]+blist)) b = -blist[-1] A000587.append(b) # Chai Wah Wu, Sep 19 2014
-
Sage
expnums(26, -1) # Zerinvary Lajos, May 15 2009
Formula
a(n) = e*Sum_{k>=0} (-1)^k*k^n/k!. - Benoit Cloitre, Jan 28 2003
E.g.f.: exp(1 - e^x).
a(n) = Sum_{k=0..n} (-1)^k S2(n, k), where S2(i, j) are the Stirling numbers of second kind A008277.
G.f.: (x/(1-x))*A(x/(1-x)) = 1 - A(x); the binomial transform equals the negative of the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
With different signs: g.f.: Sum_{k>=0} x^k/Product_{L=1..k} (1 + L*x).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*C(n-1, i). - Ralf Stephan, Feb 24 2005
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential); then a(n) = PE^-1 [n,1]. - Gottfried Helms, Apr 08 2007
Take the series 0^n/0! - 1^n/1! + 2^n/2! - 3^n/3! + 4^n/4! + ... If n=0 then the result will be 1/e, where e = 2.718281828... If n=1, the result will be -1/e. If n=2, the result will be 0 (i.e., 0/e). As we continue for higher natural number values of n sequence for the Roa Uppuluri-Carpenter numbers is generated in the numerator, i.e., 1/e, -1/e, 0/e, 1/e, 1/e, -2/e, -9/e, -9/e, 50/e, 267/e, ... . - Peter Collins (pcolins(AT)eircom.net), Jun 04 2007
The sequence (-1)^n*a(n), with general term Sum_{k=0..n} (-1)^(n-k)*S2(n, k), has e.g.f. exp(1-exp(-x)). It also has Hankel transform (-1)^C(n+1,2)*A000178(n) and binomial transform A109747. - Paul Barry, Mar 31 2008
G.f.: 1 / (1 + x / (1 - x / (1 + x / (1 - 2*x / (1 + x / (1 - 3*x / (1 + x / ...))))))). - Michael Somos, May 12 2012
From Sergei N. Gladkovskii, Sep 28 2012 to Feb 07 2014: (Start)
Continued fractions:
G.f.: -1/U(0) where U(k) = x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)+x) where U(k) = 1 + x - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1+x/G(0) where G(k) = x*k - 1 + x^2*(k+1)/G(k+1).
G.f.: (1 - G(0))/(x+1) where G(k) = 1 - 1/(1-k*x)/(1-x/(x+1/G(k+1) )).
G.f.: 1 + x/(G(0)-x) where G(k) = x*k + 2*x - 1 - x*(x*k+x-1)/G(k+1).
G.f.: G(0)/(1+x), where G(k) = 1-x^2*(k+1)/(x^2*(k+1)+(x*k-1-x)*(x*k-1)/G(k+1)).
(End)
a(n) = B_n(-1), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
From Mélika Tebni, May 20 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^k*Bell(k)*A129062(n, k).
a(n) = Sum_{k=0..n} (-1)^k*k!*A130191(n, k). (End)
Comments