A074981 Conjectured list of positive numbers which are not of the form r^i - s^j, where r,s,i,j are integers with r>0, s>0, i>1, j>1.
6, 14, 34, 42, 50, 58, 62, 66, 70, 78, 82, 86, 90, 102, 110, 114, 130, 134, 158, 178, 182, 202, 206, 210, 226, 230, 238, 246, 254, 258, 266, 274, 278, 290, 302, 306, 310, 314, 322, 326, 330, 358, 374, 378, 390, 394, 398, 402, 410, 418, 422, 426
Offset: 1
Examples
Examples showing that certain numbers are not in the sequence: 10 = 13^3 - 3^7, 22 = 7^2 - 3^3, 29 = 15^2 - 14^2, 31 = 2^5 - 1, 52 = 14^2 - 12^2, 54 = 3^4 - 3^3, 60 = 2^6 - 2^2, 68 = 10^2 - 2^5, 72 = 3^4 - 3^2, 76 = 5^3 - 7^2, 84 = 10^2 - 2^4, ... 342 = 7^3 - 1^2, ...
References
- R. K. Guy, Unsolved Problems in Number Theory, Sections D9 and B19.
- P. Ribenboim, Catalan's Conjecture, Academic Press NY 1994.
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.
Links
- Mauro Fiorentini, Table of n, a(n) for n = 1..138
- A. Baker, Review of "Catalan's conjecture" by P. Ribenboim, Bull. Amer. Math. Soc. 32 (1995), 110-112.
- M. E. Bennett, On Some Exponential Equations Of S. S. Pillai, Canad. J. Math. 53 (2001), 897-922.
- Yu. F. Bilu, Catalan's Conjecture (after Mihailescu)
- J. Boéchat and M. Mischler, La conjecture de Catalan racontée a un ami qui a le temps, arXiv:math/0502350 [math.NT], 2005-2006.
- C. K. Caldwell, The Prime Glossary, Catalan's Problem
- T. Metsankyla, Catalan's Conjecture: Another old Diophantine problem solved, Bull. Amer. Math. Soc. 41 (2004), 43-57.
- Alf van der Poorten, Remarks on the sequence of 'perfect' powers
- P. Ribenboim, Catalan's Conjecture, Séminaire de Philosophie et Mathématiques, 6 (1994), pp. 1-11.
- P. Ribenboim, Catalan's Conjecture, Amer. Math. Monthly, Vol. 103(7) Aug-Sept 1996, pp. 529-538.
- Gérard Villemin, Conjecture de Catalan (French)
- Eric Weisstein's World of Mathematics, Draft Proof of Catalan's Conjecture Circulated
- Eric Weisstein's World of Mathematics, Pillai's Conjecture
- Wikipedia, Catalan's conjecture
- Wikipedia, Hall's conjecture
Crossrefs
n such that A076427(n) = 0. [Corrected by Jonathan Sondow, Apr 14 2014]
For a count of the representations of a number as the difference of two perfect powers, see A076427. The numbers that appear to have unique representations are listed in A076438.
For sequence with similar definition, but allowing negative powers, see A066510.
Extensions
Corrected by Don Reble and Jud McCranie, Oct 08 2002. Corrections were also sent in by Neil Fernandez, David W. Wilson, and Reinhard Zumkeller.
Comments