cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A309509 G.f. satisfies A(A(x)) = F(x), where F(x) is the g.f. for A001787(n) = n*2^(n-1).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 0, 4, 6, -58, 100, 1052, -5924, -21972, 322020, 332392, -21168682, 29068598, 1724404180, -7070346036, -172304798980, 1290100381724, 20728501384592, -247269172883976, -2936888518668676, 53037176259027580, 477640220538178184
Offset: 0

Views

Author

Vladimir Reshetnikov, Aug 05 2019

Keywords

Comments

A(x) is sometimes called a functional square root, or half-iterate of F(x).

Crossrefs

Programs

  • Mathematica
    half[q_] := half[q] = Module[{h}, h[0] = 0; h[1] = 1; h[n_Integer] := h[n] = Module[{c}, c[m_Integer /; m < n] := h[m]; c[n] /. Solve[q[n] == Sum[k! c[k] BellY[n, k, Table[m! c[m], {m, n - k + 1}]], {k, n}]/n!, c[n]][[1]]]; h]; a[n_Integer] := a[n] = half[Function[k, k 2^(k-1)]][n]; Table[a[n], {n, 0, 26}]

Formula

Define the sequence b(n,k) as follows. If nSeiichi Manyama, May 03 2024

A209519 Expansion A(x) = Sum_{n>0} a(n)*x^n/(3^(n-1)*n!), A(x) satisfies A(A(A(x)))=e^x-1.

Original entry on oeis.org

1, 1, 0, 0, 2, -21, 138, 150, -22833, 303975, 3451320, -214016553, 666006714, 228865308144, -4943013567642, -396567325158381, 21423378444873687, 1022158819761317838, -121532275123709160942
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 10 2012

Keywords

Crossrefs

Cf. A184011.

Programs

  • Maxima
    T(n,m):=if n=m then 1 else 1/3*(stirling2(n,m)*m!/n!-sum(T(k,m)*sum(T(n,i)*T(i,k),i,k,n),k,m+1,n-1)-T(m,m)*sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist(n!*3^(n-1)*(T(n,1)),n,1,7);

Formula

a(n)=3^(n-1)*n!*T(n,1), T(n,m)=1/3*(stirling2(n,m)*m!/n!-sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*T(i,k)))-T(m,m)*sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1.

A220112 E.g.f. A(x) satisfies A(A(x)) = (1/4)*log(1/(1-4*x)).

Original entry on oeis.org

1, 2, 10, 80, 872, 11928, 195072, 3702080, 80065792, 1950808000, 53016791360, 1587229842688, 51619520360960, 1808576831681536, 68562454975587328, 2830905156661645312, 124395772159835529216, 5504660984739184156672, 250011277837808237105152, 14799530615476409472303104
Offset: 1

Views

Author

Dmitry Kruchinin, Dec 05 2012

Keywords

Comments

a(23) = -4050933314339181211663673622528 is the first negative term. - Vladimir Reshetnikov, Aug 15 2021

References

  • Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.

Crossrefs

Programs

  • Maple
    A := proc(n, m) option remember; if n = m then 1 else
    1/2*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - add(A(n,k)*A(k,m), k =m+1..n-1)) fi end: a := n -> A(n,1): seq(a(n), n = 1..23); # Peter Luschny, Aug 15 2021
  • Mathematica
    t[n_, m_] := t[n, m] = 1/2*(4^(n - m)*(-1)^(n - m)*StirlingS1[n, m] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 20}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*stirling1(n,m)-sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist((T(n,1)),n,1,10);

Formula

a(n) = T(n,1), T(n,m) = (1/2)*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - Sum_{i=m+1..n-1} T(n,i)*T(i,m)), T(n,n)=1.

Extensions

More terms from Vladimir Reshetnikov, Aug 15 2021

A199203 Decimal expansion of f(0) where f is the functional square root (half-iterate) of exponent, f(f(x))=exp(x).

Original entry on oeis.org

4, 9, 8, 5, 6, 3
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 03 2011

Keywords

Comments

f(A199203) = 1, where f is the functional square root of exponent.
The listed digits are a conjecture obtained as a common result of several different numeric approximation algorithms, they haven't been rigorously proved to be correct.

Examples

			0.498563...
		

Crossrefs

Programs

  • Mathematica
    n = 23; p[s_, 1] := c[s]; p[0, n_] := c[0]^n; p[s_, n_] := p[s, n] = Expand[Sum[c[k] p[s - k, n - 1], {k, 0, s}]]; d[n_, 0] := Sum[c[k] c[0]^k, {k, 0, n}]; d[n_, i_] := Sum[c[k] p[i, k], {k, 1, n}]; a = c[0] /. FindRoot[Table[d[n, k] k! == 1, {k, 0, n}], Table[{c[k], 2^-k}, {k, 0, n}], WorkingPrecision -> 30]; First[RealDigits[a, 10, 6]]

A372746 E.g.f. A(x) satisfies A(A(A(A(A(x))))) = (exp(5*x) - 1)/5.

Original entry on oeis.org

0, 1, 1, -1, 3, -5, -140, 3265, -35145, -423300, 29156450, -244674300, -35711239900, 1323533263450, 79091925545150, -7803803198306500, -249393437031632750, 68360119098495114000, 386044168785212367500, -899401682046014451577000
Offset: 0

Views

Author

Seiichi Manyama, May 12 2024

Keywords

Crossrefs

Formula

Define the sequence b(n,m) as follows. If n

A372795 E.g.f. A(x) satisfies A(A(A(A(x)))) = (exp(8*x) - 1)/8.

Original entry on oeis.org

0, 1, 2, -2, 8, 24, -2240, 59600, -640000, -35477120, 2287843200, -337824000, -8328489693696, 320219485774848, 53149588906171392, -5832590252624818176, -534898113615540043776, 142559169839206640025600, 6582786304965587026329600
Offset: 0

Author

Seiichi Manyama, May 13 2024

Keywords

Crossrefs

Formula

Define the sequence b(n,m) as follows. If n

A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1

Author

Thomas Scheuerle, Mar 10 2025

Keywords

Comments

This is the main entry for this sequence of fractions.
Convergence and analytic continuation of this series representation are interesting research topics with many unsolved problems and open questions.
Evaluating the polynomial of row n P(x) = Sum_{k=1..n} x^(n+1-k)*A381932(n, k)/T(n, k) gives A144150(n+1, x-1)/(n+1)!.

Examples

			Triangle T(n, k) begins:
[1]  2;
[2]  4,   12;
[3]  8,   48,     48;
[4]  16,  144,    24,     180;
[5]  32,  1152,   1728,   5760,   8640;
[6]  64,  640,    3456,   5760,   17280,   6720;
[7]  128, 7680,   34560,  1152,   34560,   32256,   241920;
[8]  256, 26880,  82944,  414720, 41472,   580608,  107520,   1451520;
[9]  512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));

Formula

T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).

A381932 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1

Author

Thomas Scheuerle, Mar 12 2025

Keywords

Comments

The main entry for this sequence of fractions is in A381931.

Examples

			Triangle T(n, k) begins:
[1]  1;
[2]  1,    -1;
[3]  1,    -5,     1;
[4]  1,   -13,     1,     -1;
[5]  1,   -77,    89,    -91,    11;
[6]  1,   -29,   175,   -149,    91,     -1;
[7]  1,  -223,  1501,    -37,   391,    -43,   -11;
[8]  1,  -481,  2821, -13943,   725,  -2357,    17,   29;
[9]  1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Cf. A381931 (denominators).

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));

Formula

Conjecture: abs(T(n, 2)) = A064169(n - 1).
T(n, n) = numerator(A180609(n)/(n!*(n+1)!)).
Showing 1-8 of 8 results.