cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A136206 Triangle H(n,j) (n=1,2,3,..., j=2,3,4,...) read by rows: let X(k,l,n) := Stirling2(n,k)*Stirling2(k,l) for 1<=k<=n and 1<=l<=k. Then H(n,j)= sum_{k+l=j, 1<=k<=n and 1<=l<=k} X(k,l,n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 7, 13, 19, 13, 6, 1, 1, 15, 40, 85, 96, 75, 35, 10, 1, 1, 31, 121, 335, 560, 616, 471, 240, 80, 15, 1, 1, 63, 364, 1253, 2891, 4221, 4502, 3353, 1806, 665, 161, 21, 1, 1, 127, 1093, 4599, 13923, 26222, 36225, 36205, 26895, 14756, 5887, 1638, 294, 28, 1
Offset: 1

Views

Author

Gottfried Helms, Apr 15 2008

Keywords

Comments

Row n has 2n-1 terms. The row sums are given by A000258.

Examples

			Triangle begins:
..........................1
.....................1....1....1
................1....3....4....3....1
...........1....7...13...19...13....6...1
......1...15...40...85...96...75...35..10..1
..1..31..121..335..560..616..471..240..80..15..1
.................................................
Assume a matrix-function rowshift(M) which computes M1 = rowshift(M) in the following way: M =
[a,b,c,...]
[k,l,m,...]
[r,s,t,...]
[.........]
becomes M1 =
[a,b,c, ......]
[0,k,l,m, ....]
[0,0,r,s,t,...]
[ ............]
Define the lower-triangular matrix of Stirling-numbers of the second kind S =
[1 0 0 0 ...]
[1 1 0 0 ...]
[1 3 1 0 ...]
[1 7 6 1 ...]
[ ..........]
Then with H0 =
[1]
[1]
[1]
[1]
...
we have
H1 = S * rowshift(H0) \\ = S
H2 = S * rowshift(H1)
H3 = S * rowshift(H2)
...
H1 =
1 . . . .
1 1 . . .
1 3 1 . .
1 7 6 1 .
1 15 25 10 1
H2=
1 . . . . . . . .
1 1 1 . . . . . .
1 3 4 3 1 . . . .
1 7 13 19 13 6 1 . .
1 15 40 85 96 75 35 10 1
H3=
1 . . . . . . . . . . . .
1 1 1 1 . . . . . . . . .
1 3 4 6 4 3 1 . . . . . .
1 7 13 26 31 31 25 13 6 1 . . .
1 15 40 100 171 220 255 215 156 85 35 10 1
(based on the Maple implementation from _R. J. Mathar_)
		

Crossrefs

Cf. A136248.

Programs

  • Maple
    # From R. J. Mathar: (Start)
    X := proc(k,l,n)
    if k >=1 and k <=n and l >=1 and l <= n then
    combinat[stirling2](n,k)*combinat[stirling2](k,l) ;
    else
    0 ;
    fi ;
    end:
    H := proc(n,j)
    add( X(j-l,l,n),l=1..floor(j/2)) ;
    end:
    for n from 1 to 10 do
    for j from 2 to 2*n do
    printf("%d ",H(n,j)) ;
    od:
    printf("\n") ;
    od:
    # (End)

Extensions

Definition in terms of Stirling2 numbers found by R. J. Mathar, Apr 15 2008
Showing 1-1 of 1 results.