cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeffrey R. Goodwin

Jeffrey R. Goodwin's wiki page.

Jeffrey R. Goodwin has authored 2 sequences.

A193912 Partial sums of A193911.

Original entry on oeis.org

1, 4, 11, 25, 50, 93, 162, 272, 439, 694, 1069, 1627, 2432, 3611, 5292, 7730, 11181, 16156, 23167, 33237, 47390, 67673, 96134, 136868, 193971, 275634, 390049, 553599, 782668, 1110023, 1568432, 2223430, 3140553, 4450872, 6285459, 8906457, 12576010, 17818405
Offset: 1

Author

Jeffrey R. Goodwin, Aug 08 2011

Keywords

Examples

			We have A193911(1)=1, A193911(2)=3, and A193911(3)=7. Thus a(1)=1, a(2)=4, and a(3)=11.
		

Programs

  • Mathematica
    LinearRecurrence[{3,0,-8,7,3,-6,2},{1,4,11,25,50,93,162},40] (* Harvey P. Dale, Sep 09 2015 *)
    CoefficientList[Series[(1 + x - x^2)/((1 - x)^4*(1 + x)*(1 - 2*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 25 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2))) \\ G. C. Greubel, Feb 25 2017

Formula

a(n) = Sum_{i=1..n} 1/8*(2^(i/2+2)*((10-7*sqrt(2))*(-1)^(i) + 10 + 7*sqrt(2))-(-1)^(i)-2*i*(i+12)-79).
G.f.: x*(1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2)). - Alexander R. Povolotsky, Aug 12 2011
a(n) = (1/32)*( (-1/2)^n + 32*(41*sqrt(2)-58)*(sqrt(2)-2)^n - 32*(58+41*sqrt(2))*(-2-sqrt(2))^n ).

A193911 Sums of the diagonals of the matrix formed by listing the h-Stohr sequences in increasing order.

Original entry on oeis.org

1, 3, 7, 14, 25, 43, 69, 110, 167, 255, 375, 558, 805, 1179, 1681, 2438, 3451, 4975, 7011, 10070, 14153, 20283, 28461, 40734, 57103, 81663, 114415, 163550, 229069, 327355, 458409, 654998, 917123, 1310319, 1834587, 2620998, 3669553, 5242395, 7339525, 10485230
Offset: 1

Author

Jeffrey R. Goodwin, Aug 08 2011

Keywords

Examples

			Portion of the first three rows:
A033627, 2-Stohr  1  2  4  7
A026474, 3-Stohr  1  2  4  8
A051039, 4-Stohr  1  2  4  8
Thus a(1)=1, a(2)=2+1=3, and a(3)=4+2+1=7.
		

Programs

Formula

All h-Stohr sequences have formula: h terms 1,2,..,2^(n-1),..,2^(h-1) and then continue (2^h-1)(n-h)+1. - Henry Bottomley, Feb 04 2000
So we get the sums from the piecewise function:
for odd n>=1, a(n)=2^((n+1)/2)-n+((n+1)/2)-2+Sum_{i=0..((n+1)/2)-1}(2*i+1)*(2^(((n+1)/2)-i) -1);
for even n>=2, a(n)=2^((n/2)+2)-n-4+Sum_{i=0..(n/2)-1}(2*i+1)*(2^((n/2)-i) -1). - Jeffrey R. Goodwin, Aug 09 2011
Let odd m>=3, then a(n)=a(m)-A000295(((m+1)/2)+1), where n>=2 is even. - Jeffrey R. Goodwin, Aug 09 2011
Let even m>=2, then a(n)=a(m)-A077802(m/2)=a(m)-A095151(m/2), where n>=1 is odd. - Jeffrey R. Goodwin, Aug 09 2011
From Alexander R. Povolotsky, Aug 09 2011: (Start)
G.f.: x*(1 + x - x^2)/((-1 + x)^3*(-1 - x + 2*x^2 + 2*x^3)).
a(n+4) = -2*a(n)+3*a(n+2)+n+5.
a(n) = 1/8*(2^(n/2+2)*((10-7*sqrt(2))*(-1)^n+10+7*sqrt(2))-(-1)^n-2*n*(n+12)-79). (End)