cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193912 Partial sums of A193911.

Original entry on oeis.org

1, 4, 11, 25, 50, 93, 162, 272, 439, 694, 1069, 1627, 2432, 3611, 5292, 7730, 11181, 16156, 23167, 33237, 47390, 67673, 96134, 136868, 193971, 275634, 390049, 553599, 782668, 1110023, 1568432, 2223430, 3140553, 4450872, 6285459, 8906457, 12576010, 17818405
Offset: 1

Views

Author

Jeffrey R. Goodwin, Aug 08 2011

Keywords

Examples

			We have A193911(1)=1, A193911(2)=3, and A193911(3)=7. Thus a(1)=1, a(2)=4, and a(3)=11.
		

Programs

  • Mathematica
    LinearRecurrence[{3,0,-8,7,3,-6,2},{1,4,11,25,50,93,162},40] (* Harvey P. Dale, Sep 09 2015 *)
    CoefficientList[Series[(1 + x - x^2)/((1 - x)^4*(1 + x)*(1 - 2*x^2)), {x, 0, 50}], x] (* G. C. Greubel, Feb 25 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2))) \\ G. C. Greubel, Feb 25 2017

Formula

a(n) = Sum_{i=1..n} 1/8*(2^(i/2+2)*((10-7*sqrt(2))*(-1)^(i) + 10 + 7*sqrt(2))-(-1)^(i)-2*i*(i+12)-79).
G.f.: x*(1+x-x^2)/((1-x)^4*(1+x)*(1-2*x^2)). - Alexander R. Povolotsky, Aug 12 2011
a(n) = (1/32)*( (-1/2)^n + 32*(41*sqrt(2)-58)*(sqrt(2)-2)^n - 32*(58+41*sqrt(2))*(-2-sqrt(2))^n ).
Showing 1-1 of 1 results.