A030523 A convolution triangle of numbers obtained from A001792.
1, 3, 1, 8, 6, 1, 20, 25, 9, 1, 48, 88, 51, 12, 1, 112, 280, 231, 86, 15, 1, 256, 832, 912, 476, 130, 18, 1, 576, 2352, 3276, 2241, 850, 183, 21, 1, 1280, 6400, 10976, 9424, 4645, 1380, 245, 24, 1, 2816, 16896, 34848, 36432, 22363, 8583, 2093, 316, 27, 1
Offset: 1
Examples
{1}; {3,1}; {8,6,1}; {20,25,9,1}; {48,88,51,12,1}; ... (0, 3, -1/3, 4/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: 1 0 1 0 3 1 0 8 6 1 0 20 25 9 1 0 48 88 51 12 1 ... - _Philippe Deléham_, Feb 20 2013
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Crossrefs
Cf. A057682 (alternating row sums).
Programs
-
Mathematica
a[n_, m_] := SeriesCoefficient[(1-2*x)^2/((x^2-x)*y + (1-2*x)^2) - 1, {x, 0, n}, {y, 0, m}]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2015, after Vladimir Kruchinin *)
Formula
a(n, 1) = A001792(n-1).
Row sums = A039717(n).
a(n, m) = 2*(2*m+n-1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
T(n,k) = 4*T(n-1,k) - 4*T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Feb 20 2013
Sum_{k=1..n} T(n,k)*2^(k-1) = A140766(n). -Philippe Deléham, Feb 20 2013
G.f.: (1-2*x)^2/((x^2-x)*y+(1-2*x)^2)-1. - Vladimir Kruchinin, Apr 28 2015
A156827 A001792*A008683.
1, -3, -8, 0, -48, 112, -256, 0, 0, 2816, -6144, 0, -28672, 61440, 131072, 0, -589824, 0, -2621440, 0, 11534336, 24117248, -50331648, 0, 0, 452984832, 0, 0, -4026531840, -8321499136
Offset: 1
Keywords
Comments
Sequence appears to be a determinant of A156826 as described therein.
A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Comments
For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
- W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
- I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
- R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..500000 [a large file]
- Archimedes Laboratory, What's special about this number?
- Affaire de Logique, Pick et Pick et Colegram (in French), No. 1051, 18-04-2018.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- James Barton, The Numbers
- A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126.
- N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
- C. K. Caldwell, Prime Curios
- Case and Abiessu, interesting number
- S. Crandall, notes on interesting digital ephemera
- O. Curtis, Interesting Numbers
- M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
- Walter Felscher, Historia Matematica Mailing List Archive.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 371.
- Robert R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1 1995 pp. 27-29.
- E. Friedman, What's Special About This Number?
- R. K. Guy, Letter to N. J. A. Sloane
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Kival Ngaokrajang, Illustration about relation to many other sequences, when the sequence is considered as a triangular table read by its antidiagonals. Additional illustrations when the sequence is considered as a centered triangular table read by rows.
- Mike Keith, All Numbers Are Interesting: A Constructive Approach
- Leonardo of Pisa [Leonardo Pisano], Illustration of initial terms, from Liber Abaci [The Book of Calculation], 1202 (photo by David Singmaster).
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 15, 24.
- Robert Munafo, Notable Properties of Specific Numbers.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- R. Phillips, Numbers from one to thirty-one
- J. Striker, Dynamical Algebraic Combinatorics: Promotion, Rowmotion, and Resonance, Notices of the AMS, June/July 2017, pp. 543-549.
- G. Villemin's Almanac of Numbers, NOMBRES en BREF (in French)
- Eric Weisstein's World of Mathematics, Natural Number, Positive Integer, Counting Number Composition, Davenport-Schinzel Sequence, Idempotent Number, N, Smarandache Ceil Function, Whole Number, Engel Expansion, and Trinomial Coefficient
- Wikipedia, List of numbers, Interesting number paradox, and Floyd's triangle
- Robert G. Wilson v, English names for the numbers from 0 to 11159 without spaces or hyphens
- Robert G. Wilson v, American English names for the numbers from 0 to 100999 without spaces or hyphens
- Index entries for "core" sequences
- Index entries for sequences of the a(a(n)) = 2n family
- Index entries for sequences that are permutations of the natural numbers
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index to divisibility sequences
- Index entries for sequences related to Benford's law
Crossrefs
A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Programs
-
Haskell
a000027 = id a000027_list = [1..] -- Reinhard Zumkeller, May 07 2012
-
Julia
print([n for n in 1:280]) # Paul Muljadi, Apr 09 2024
-
Magma
[ n : n in [1..100]];
-
Maple
A000027 := n->n; seq(A000027(n), n=1..100);
-
Mathematica
Range@ 77 (* Robert G. Wilson v, Mar 31 2015 *)
-
Maxima
makelist(n, n, 1, 30); /* Martin Ettl, Nov 07 2012 */
-
PARI
{a(n) = n};
-
Perl
print join(", ", 1..280) # Paul Muljadi, May 29 2024
-
Python
def A000027(n): return n # Chai Wah Wu, May 09 2022
-
R
1:100
-
Shell
seq 1 100
Formula
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)
Extensions
Links edited by Daniel Forgues, Oct 07 2009.
A000120 1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3
Offset: 0
Comments
The binary weight of n is also called Hamming weight of n. [The term "Hamming weight" was named after the American mathematician Richard Wesley Hamming (1915-1998). - Amiram Eldar, Jun 16 2021]
a(n) is also the largest integer such that 2^a(n) divides binomial(2n, n) = A000984(n). - Benoit Cloitre, Mar 27 2002
To construct the sequence, start with 0 and use the rule: If k >= 0 and a(0), a(1), ..., a(2^k-1) are the first 2^k terms, then the next 2^k terms are a(0) + 1, a(1) + 1, ..., a(2^k-1) + 1. - Benoit Cloitre, Jan 30 2003
An example of a fractal sequence. That is, if you omit every other number in the sequence, you get the original sequence. And of course this can be repeated. So if you form the sequence a(0 * 2^n), a(1 * 2^n), a(2 * 2^n), a(3 * 2^n), ... (for any integer n > 0), you get the original sequence. - Christopher.Hills(AT)sepura.co.uk, May 14 2003
The n-th row of Pascal's triangle has 2^k distinct odd binomial coefficients where k = a(n) - 1. - Lekraj Beedassy, May 15 2003
Fixed point of the morphism 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, etc., starting from a(0) = 0. - Robert G. Wilson v, Jan 24 2006
a(n) is the number of times n appears among the mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421. - Jeremy Gardiner, Jan 25 2006
a(n) is the number of solutions of the Diophantine equation 2^m*k + 2^(m-1) + i = n, where m >= 1, k >= 0, 0 <= i < 2^(m-1); a(5) = 2 because only (m, k, i) = (1, 2, 0) [2^1*2 + 2^0 + 0 = 5] and (m, k, i) = (3, 0, 1) [2^3*0 + 2^2 + 1 = 5] are solutions. - Hieronymus Fischer, Jan 31 2006
The first appearance of k, k >= 0, is at a(2^k-1). - Robert G. Wilson v, Jul 27 2006
Sequence is given by T^(infinity)(0) where T is the operator transforming any word w = w(1)w(2)...w(m) into T(w) = w(1)(w(1)+1)w(2)(w(2)+1)...w(m)(w(m)+1). I.e., T(0) = 01, T(01) = 0112, T(0112) = 01121223. - Benoit Cloitre, Mar 04 2009
For n >= 2, the minimal k for which a(k(2^n-1)) is not multiple of n is 2^n + 3. - Vladimir Shevelev, Jun 05 2009
Triangle inequality: a(k+m) <= a(k) + a(m). Equality holds if and only if C(k+m, m) is odd. - Vladimir Shevelev, Jul 19 2009
a(k*m) <= a(k) * a(m). - Robert Israel, Sep 03 2023
The number of occurrences of value k in the first 2^n terms of the sequence is equal to binomial(n, k), and also equal to the sum of the first n - k + 1 terms of column k in the array A071919. Example with k = 2, n = 7: there are 21 = binomial(7,2) = 1 + 2 + 3 + 4 + 5 + 6 2's in a(0) to a(2^7-1). - Brent Spillner (spillner(AT)acm.org), Sep 01 2010, simplified by R. J. Mathar, Jan 13 2017
Let m be the number of parts in the listing of the compositions of n as lists of parts in lexicographic order, a(k) = n - length(composition(k)) for all k < 2^n and all n (see example); A007895 gives the equivalent for compositions into odd parts. - Joerg Arndt, Nov 09 2012
From Daniel Forgues, Mar 13 2015: (Start)
Just tally up row k (binary weight equal k) from 0 to 2^n - 1 to get the binomial coefficient C(n,k). (See A007318.)
0 1 3 7 15
0: O | . | . . | . . . . | . . . . . . . . |
1: | O | O . | O . . . | O . . . . . . . |
2: | | O | O O . | O O . O . . . |
3: | | | O | O O O . |
4: | | | | O |
Due to its fractal nature, the sequence is quite interesting to listen to.
(End)
The binary weight of n is a particular case of the digit sum (base b) of n. - Daniel Forgues, Mar 13 2015
The mean of the first n terms is 1 less than the mean of [a(n+1),...,a(2n)], which is also the mean of [a(n+2),...,a(2n+1)]. - Christian Perfect, Apr 02 2015
a(n) is also the largest part of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2, 2, 2, 1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 20 2017
a(n) is also known as the population count of the binary representation of n. - Chai Wah Wu, May 19 2020
Examples
Using the formula a(n) = a(floor(n / floor_pow4(n))) + a(n mod floor_pow4(n)): a(4) = a(1) + a(0) = 1, a(8) = a(2) + a(0) = 1, a(13) = a(3) + a(1) = 2 + 1 = 3, a(23) = a(1) + a(7) = 1 + a(1) + a(3) = 1 + 1 + 2 = 4. _Gary W. Adamson_ points out (Jun 03 2009) that this can be written as a triangle: 0, 1, 1,2, 1,2,2,3, 1,2,2,3,2,3,3,4, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,... where the rows converge to A063787. From _Joerg Arndt_, Nov 09 2012: (Start) Connection to the compositions of n as lists of parts (see comment): [ #]: a(n) composition [ 0]: [0] 1 1 1 1 1 [ 1]: [1] 1 1 1 2 [ 2]: [1] 1 1 2 1 [ 3]: [2] 1 1 3 [ 4]: [1] 1 2 1 1 [ 5]: [2] 1 2 2 [ 6]: [2] 1 3 1 [ 7]: [3] 1 4 [ 8]: [1] 2 1 1 1 [ 9]: [2] 2 1 2 [10]: [2] 2 2 1 [11]: [3] 2 3 [12]: [2] 3 1 1 [13]: [3] 3 2 [14]: [3] 4 1 [15]: [4] 5 (End)
References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 119.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589. - N. J. A. Sloane, Aug 03 2012
- Manfred R. Schroeder, Fractals, Chaos, Power Laws. W.H. Freeman, 1991, p. 383.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Franklin T. Adams-Watters, and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS, Vol. 12 (2009), Article 09.5.6.
- J.-P. Allouche, On an Inequality in a 1970 Paper of R. L. Graham, INTEGERS 21A (2021), #A2.
- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197. (PS file on author's web page.)
- Jean-Paul Allouche, Jeffrey Shallit and Jonathan Sondow, Summation of Series Defined by Counting Blocks of Digits, arXiv:math/0512399 [math.NT], 2005-2006.
- Jean-Paul Allouche, Jeffrey Shallit and Jonathan Sondow, Summation of series defined by counting blocks of digits, J. Number Theory, Vol. 123 (2007), pp. 133-143.
- Richard Bellman and Harold N. Shapiro, On a problem in additive number theory, Annals Math., Vol. 49, No. 2 (1948), pp. 333-340. - _N. J. A. Sloane_, Mar 12 2009
- C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014. See delta_n.
- Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
- F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
- Karl Dilcher and Larry Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, Vol. 22 (2015), #P2.24.
- Josef Eschgfäller and Andrea Scarpante, Dichotomic random number generators, arXiv:1603.08500 [math.CO], 2016.
- Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
- Steven R. Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger and Robert F. Tichy, Mellin Transforms And Asymptotics: Digital Sums, Theoret. Computer Sci., Vol. 123, No. 2 (1994), pp. 291-314.
- Michael Gilleland, Some Self-Similar Integer Sequences.
- P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, 263-271.
- Ronald L. Graham, On primitive graphs and optimal vertex assignments, Internat. Conf. Combin. Math. (New York, 1970), Annals of the NY Academy of Sciences, Vol. 175, 1970, pp. 170-186.
- Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Vacca-Type Series for Values of the Generalized Euler Constant Function and its Derivative, J. Integer Sequences, Vol. 13 (2010), Article 10.7.3.
- Nick Hobson, Python program for this sequence.
- Kathy Q. Ji and Herbert S. Wilf, Extreme Palindromes, arXiv:math/0611465 [math.CO], 2006.
- Guy Louchard and Helmut Prodinger, The Largest Missing Value in a Composition of an Integer and Some Allouche-Shallit-Type Identities, J. Int. Seq., Vol. 16 (2013), Article 13.2.2.
- J.-L. Mauclaire and Leo Murata, On q-additive functions, I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
- J.-L. Mauclaire and Leo Murata, On q-additive functions, II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
- M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., Vol. 3 (1974), pp. 255-261.
- Kerry Mitchell, Spirolateral-Type Images from Integer Sequences, 2013.
- Sam Northshield, Stern's Diatomic Sequence 0,1,1,2,1,3,2,3,1,4,..., Amer. Math. Month., Vol. 117, No. 7 (2010), pp. 581-598.
- Theophanes E. Raptis, Finite Information Numbers through the Inductive Combinatorial Hierarchy, arXiv:1805.06301 [physics.gen-ph], 2018.
- Carlo Sanna, On Arithmetic Progressions of Integers with a Distinct Sum of Digits, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.1. - _N. J. A. Sloane_, Dec 29 2012
- Nanci Smith, Problem B-82, Fib. Quart., Vol. 4, No. 4 (1966), pp. 374-375.
- Jonathan Sondow, New Vacca-type rational series for Euler's constant and its "alternating" analog ln 4/Pi, arXiv:math/0508042 [math.NT] 2005; Additive Number Theory, D. and G. Chudnovsky, eds., Springer, 2010, pp. 331-340.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions, 2004.
- Ralf Stephan, Table of generating functions.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- Kenneth B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., Vol. 32 (1977), pp. 717-730. See B(n). - _N. J. A. Sloane_, Apr 05 2014
- J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
- Robert Walker, Self Similar Sloth Canon Number Sequences.
- Eric Weisstein's World of Mathematics, Binary, Digit Count, Stolarsky-Harborth Constant, Digit Sum.
- Wikipedia, Hamming weight.
- Wolfram Research, Numbers in Pascal's triangle.
- Index entries for "core" sequences
- Index entries for sequences related to binary expansion of n
- Index entries for Colombian or self numbers and related sequences
- Index entries for sequences that are fixed points of mappings
Crossrefs
The basic sequences concerning the binary expansion of n are this one, A000788, A000069, A001969, A023416, A059015, A007088.
a(n) = n - A011371(n).
Sum of digits of n written in bases 2-16: this sequence, A053735, A053737, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
This is Guy Steele's sequence GS(3, 4) (see A135416).
Cf. A055640, A055641, A102669-A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564 (for base 10).
Cf. A230952 (boustrophedon transform).
Cf. A070939 (length of binary representation of n).
Programs
-
Fortran
c See link in A139351
-
Haskell
import Data.Bits (Bits, popCount) a000120 :: (Integral t, Bits t) => t -> Int a000120 = popCount a000120_list = 0 : c [1] where c (x:xs) = x : c (xs ++ [x,x+1]) -- Reinhard Zumkeller, Aug 26 2013, Feb 19 2012, Jun 16 2011, Mar 07 2011
-
Haskell
a000120 = concat r where r = [0] : (map.map) (+1) (scanl1 (++) r) -- Luke Palmer, Feb 16 2014
-
Magma
[Multiplicity(Intseq(n, 2), 1): n in [0..104]]; // Marius A. Burtea, Jan 22 2020
-
Magma
[&+Intseq(n, 2):n in [0..104]]; // Marius A. Burtea, Jan 22 2020
-
Maple
A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120; A000120 := n -> add(i, i=convert(n,base,2)): # Peter Luschny, Feb 03 2011 with(Bits): p:=n->ilog2(n-And(n,n-1)): seq(p(binomial(2*n,n)),n=0..200) # Gary Detlefs, Jan 27 2019
-
Mathematica
Table[DigitCount[n, 2, 1], {n, 0, 105}] Nest[Flatten[# /. # -> {#, # + 1}] &, {0}, 7] (* Robert G. Wilson v, Sep 27 2011 *) Table[Plus @@ IntegerDigits[n, 2], {n, 0, 104}] Nest[Join[#, # + 1] &, {0}, 7] (* IWABUCHI Yu(u)ki, Jul 19 2012 *) Log[2, Nest[Join[#, 2#] &, {1}, 14]] (* gives 2^14 term, Carlos Alves, Mar 30 2014 *)
-
PARI
{a(n) = if( n<0, 0, 2*n - valuation((2*n)!, 2))};
-
PARI
{a(n) = if( n<0, 0, subst(Pol(binary(n)), x ,1))};
-
PARI
{a(n) = if( n<1, 0, a(n\2) + n%2)}; /* Michael Somos, Mar 06 2004 */
-
PARI
a(n)=my(v=binary(n));sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Jun 24 2011
-
PARI
a(n)=norml2(binary(n)) \\ better use {A000120=hammingweight}. - M. F. Hasler, Oct 09 2012, edited Feb 27 2020
-
PARI
a(n)=hammingweight(n) \\ Michel Marcus, Oct 19 2013 (Common Lisp) (defun floor-to-power (n pow) (declare (fixnum pow)) (expt pow (floor (log n pow)))) (defun enabled-bits (n) (if (< n 4) (n-th n (list 0 1 1 2)) (+ (enabled-bits (floor (/ n (floor-to-power n 4)))) (enabled-bits (mod n (floor-to-power n 4)))))) ; Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
-
Python
def A000120(n): return bin(n).count('1') # Chai Wah Wu, Sep 03 2014
-
Python
import numpy as np A000120 = np.array([0], dtype="uint8") for bitrange in range(25): A000120 = np.append(A000120, np.add(A000120, 1)) print([A000120[n] for n in range(0, 105)]) # Karl-Heinz Hofmann, Nov 07 2022
-
Python
def A000120(n): return n.bit_count() # Requires Python 3.10 or higher. - Pontus von Brömssen, Nov 08 2022
-
Python
# Also see links.
-
SageMath
def A000120(n): if n <= 1: return Integer(n) return A000120(n//2) + n%2 [A000120(n) for n in range(105)] # Peter Luschny, Nov 19 2012
-
SageMath
def A000120(n) : return sum(n.digits(2)) # Eric M. Schmidt, Apr 26 2013
-
Scala
(0 to 127).map(Integer.bitCount()) // _Alonso del Arte, Mar 05 2019
Formula
a(0) = 0, a(2*n) = a(n), a(2*n+1) = a(n) + 1.
a(0) = 0, a(2^i) = 1; otherwise if n = 2^i + j with 0 < j < 2^i, a(n) = a(j) + 1.
G.f.: Product_{k >= 0} (1 + y*x^(2^k)) = Sum_{n >= 0} y^a(n)*x^n. - N. J. A. Sloane, Jun 04 2009
a(n) = a(n-1) + 1 - A007814(n) = log_2(A001316(n)) = 2n - A005187(n) = A070939(n) - A023416(n). - Henry Bottomley, Apr 04 2001; corrected by Ralf Stephan, Apr 15 2002
For n > 0, a(n) = n - Sum_{k=1..n} A007814(k). - Benoit Cloitre, Oct 19 2002
a(n) = n - Sum_{k>=1} floor(n/2^k) = n - A011371(n). - Benoit Cloitre, Dec 19 2002
G.f.: (1/(1-x)) * Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Ralf Stephan, Apr 19 2003
a(0) = 0, a(n) = a(n - 2^floor(log_2(n))) + 1. Examples: a(6) = a(6 - 2^2) + 1 = a(2) + 1 = a(2 - 2^1) + 1 + 1 = a(0) + 2 = 2; a(101) = a(101 - 2^6) + 1 = a(37) + 1 = a(37 - 2^5) + 2 = a(5 - 2^2) + 3 = a(1 - 2^0) + 4 = a(0) + 4 = 4; a(6275) = a(6275 - 2^12) + 1 = a(2179 - 2^11) + 2 = a(131 - 2^7) + 3 = a(3 - 2^1) + 4 = a(1 - 2^0) + 5 = 5; a(4129) = a(4129 - 2^12) + 1 = a(33 - 2^5) + 2 = a(1 - 2^0) + 3 = 3. - Hieronymus Fischer, Jan 22 2006
A fixed point of the mapping 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, ... With f(i) = floor(n/2^i), a(n) is the number of odd numbers in the sequence f(0), f(1), f(2), f(3), f(4), f(5), ... - Philippe Deléham, Jan 04 2004
When read mod 2 gives the Morse-Thue sequence A010060.
Let floor_pow4(n) denote n rounded down to the next power of four, floor_pow4(n) = 4 ^ floor(log4 n). Then a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(n) = a(floor(n / floor_pow4(n))) + a(n % floor_pow4(n)). - Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
a(n) = n - Sum_{k=2..n} Sum_{j|n, j >= 2} (floor(log_2(j)) - floor(log_2(j-1))). - Hieronymus Fischer, Jun 18 2007
a(n) = A138530(n, 2) for n > 1. - Reinhard Zumkeller, Mar 26 2008
For odd m >= 1, a((4^m-1)/3) = a((2^m+1)/3) + (m-1)/2 (mod 2). - Vladimir Shevelev, Sep 03 2010
a(n) - a(n-1) = { 1 - a(n-1) if and only if A007814(n) = a(n-1), 1 if and only if A007814(n) = 0, -1 for all other A007814(n) }. - Brent Spillner (spillner(AT)acm.org), Sep 01 2010
a(A001317(n)) = 2^a(n). - Vladimir Shevelev, Oct 25 2010
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j = 1..m+1} (floor(n/2^j + 1/2) - floor(n/2^j)), where m = floor(log_2(n)).
General formulas for the number of digits >= d in the base p representation of n, where 1 <= d < p: a(n) = Sum_{j = 1..m+1} (floor(n/p^j + (p-d)/p) - floor(n/p^j)), where m=floor(log_p(n)); g.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*p^j) - x^(p*p^j))/(1-x^(p*p^j)). (End)
a(n) = A213629(n, 1) for n > 0. - Reinhard Zumkeller, Jul 04 2012
a(n) = A240857(n,n). - Reinhard Zumkeller, Apr 14 2014
a(n) = log_2(C(2*n,n) - (C(2*n,n) AND C(2*n,n)-1)). - Gary Detlefs, Jul 10 2014
Sum_{n >= 1} a(n)/2n(2n+1) = (gamma + log(4/Pi))/2 = A344716, where gamma is Euler's constant A001620; see Sondow 2005, 2010 and Allouche, Shallit, Sondow 2007. - Jonathan Sondow, Mar 21 2015
For any integer base b >= 2, the sum of digits s_b(n) of expansion base b of n is the solution of this recurrence relation: s_b(n) = 0 if n = 0 and s_b(n) = s_b(floor(n/b)) + (n mod b). Thus, a(n) satisfies: a(n) = 0 if n = 0 and a(n) = a(floor(n/2)) + (n mod 2). This easily yields a(n) = Sum_{i = 0..floor(log_2(n))} (floor(n/2^i) mod 2). From that one can compute a(n) = n - Sum_{i = 1..floor(log_2(n))} floor(n/2^i). - Marek A. Suchenek, Mar 31 2016
Sum_{k>=1} a(k)/2^k = 2 * Sum_{k >= 0} 1/(2^(2^k)+1) = 2 * A051158. - Amiram Eldar, May 15 2020
Sum_{k>=1} a(k)/(k*(k+1)) = A016627 = log(4). - Bernard Schott, Sep 16 2020
a(m*(2^n-1)) >= n. Equality holds when 2^n-1 >= A000265(m), but also in some other cases, e.g., a(11*(2^2-1)) = 2 and a(19*(2^3-1)) = 3. - Pontus von Brömssen, Dec 13 2020
G.f.: A(x) satisfies A(x) = (1+x)*A(x^2) + x/(1-x^2). - Akshat Kumar, Nov 04 2023
A011782 Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
Comments
Apart from initial term, same as A000079 (powers of 2).
Number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
a(n) is the number of occurrences of the empty set {} in the von Neumann ordinals from 0 up to n. Each ordinal k is defined as the set of all smaller ordinals: 0 = {}, 1 = {0}, 2 = {0,1}, etc. Since {} is the foundational element of all ordinals, the total number of times it appears grows as powers of 2. - Kyle Wyonch, Mar 30 2025
Examples
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ... ( -1 1 -1) det ( 1 1 1) = 4 ( -1 -1 -1)
References
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
- Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 14.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 42.
- Colin Defant and Kai Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, arXiv:2008.12297 [math.CO], 2020.
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 10.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 25.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Mats Granvik, Alternating powers of 2 as convoluted divisor recurrence
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=2, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. Also on arXiv, arXiv:1302.2274 [math.CO], 2013.
- Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985, see pp. 392-393.
- Christoph Wernhard and Wolfgang Bibel, Learning from Łukasiewicz and Meredith: Investigations into Proof Structures (Extended Version), arXiv:2104.13645 [cs.AI], 2021.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
- Index entries for sequences related to Boolean functions
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Haskell
a011782 n = a011782_list !! n a011782_list = 1 : scanl1 (+) a011782_list -- Reinhard Zumkeller, Jul 21 2013
-
Magma
[Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
-
Maple
A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015 with(PolynomialTools): A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
-
Mathematica
f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *) CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *) Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *) Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
-
PARI
{a(n) = if( n<1, n==0, 2^(n-1))};
-
PARI
Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
-
Python
def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
-
Sage
[sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
Formula
a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019
Extensions
Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008
A000244 Powers of 3: a(n) = 3^n.
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987
Offset: 0
Comments
Same as Pisot sequences E(1, 3), L(1, 3), P(1, 3), T(1, 3). Essentially same as Pisot sequences E(3, 9), L(3, 9), P(3, 9), T(3, 9). See A008776 for definitions of Pisot sequences.
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n + 2, s(0) = 1, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
a(1) = 1, a(n+1) is the least number such that there are a(n) even numbers between a(n) and a(n+1). Generalization for the sequence of powers of k: 1, k, k^2, k^3, k^4, ... There are a(n) multiples of k-1 between a(n) and a(n+1). - Amarnath Murthy, Nov 28 2004
a(n) = sum of (n+1)-th row in Triangle A105728. - Reinhard Zumkeller, Apr 18 2005
With p(n) being the number of integer partitions of n, p(i) being the number of parts of the i-th partition of n, d(i) being the number of different parts of the i-th partition of n, m(i, j) being the multiplicity of the j-th part of the i-th partition of n, Sum_{i = 1..p(n)} being the sum over i and Product_{j = 1..d(i)} being the product over j, one has: a(n) = Sum_{i = 1..p(n)} (p(i)!/(Product_{j = 1..d(i)} m(i, j)!))*2^(p(i) - 1). - Thomas Wieder, May 18 2005
For any k > 1 in the sequence, k is the first prime power appearing in the prime decomposition of repunit R_k, i.e., of A002275(k). - Lekraj Beedassy, Apr 24 2006
a(n-1) is the number of compositions of compositions. In general, (k+1)^(n-1) is the number of k-levels nested compositions (e.g., 4^(n-1) is the number of compositions of compositions of compositions, etc.). Each of the n - 1 spaces between elements can be a break for one of the k levels, or not a break at all. - Franklin T. Adams-Watters, Dec 06 2006
Let S be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xSy if x is a subset of y. Then a(n) = |S|. - Ross La Haye, Dec 22 2006
From Manfred Boergens, Mar 28 2023: (Start)
With regard to the comment by Ross La Haye:
Cf. A001047 if either nonempty subsets are considered or x is a proper subset of y.
Cf. a(n+1) in A028243 if nonempty subsets are considered and x is a proper subset of y. (End)
If X_1, X_2, ..., X_n is a partition of the set {1, 2, ..., 2*n} into blocks of size 2 then, for n >= 1, a(n) is equal to the number of functions f : {1, 2, ..., 2*n} -> {1, 2} such that for fixed y_1, y_2, ..., y_n in {1, 2} we have f(X_i) <> {y_i}, (i = 1, 2, ..., n). - Milan Janjic, May 24 2007
This is a general comment on all sequences of the form a(n) = [(2^k)-1]^n for all positive integers k. Example 1.1.16 of Stanley's "Enumerative Combinatorics" offers a slightly different version. a(n) in the number of functions f:[n] into P([k]) - {}. a(n) is also the number of functions f:[k] into P([n]) such that the generalized intersection of f(i) for all i in [k] is the empty set. Where [n] = {1, 2, ..., n}, P([n]) is the power set of [n] and {} is the empty set. - Geoffrey Critzer, Feb 28 2009
3^(n+1) = (1, 2, 2, 2, ...) dot (1, 1, 3, 9, ..., 3^n); e.g., 3^3 = 27 = (1, 2, 2, 2) dot (1, 1, 3, 9) = (1 + 2 + 6 + 18). - Gary W. Adamson, May 17 2010
a(n) is the number of generalized compositions of n when there are 3*2^i different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1) different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
The sequence in question ("Powers of 3") also describes the number of moves of the k-th disk solving the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi puzzle (cf. A183111 - A183125).
Positions of records in the number of odd prime factors, A087436. - Juri-Stepan Gerasimov, Mar 17 2011
Sum of coefficients of the expansion of (1+x+x^2)^n. - Adi Dani, Jun 21 2011
a(n) is the number of compositions of n elements among {0, 1, 2}; e.g., a(2) = 9 since there are the 9 compositions 0 + 0, 0 + 1, 1 + 0, 0 + 2, 1 + 1, 2 + 0, 1 + 2, 2 + 1, and 2 + 2. [From Adi Dani, Jun 21 2011; modified by editors.]
Except the first two terms, these are odd numbers n such that no x with 2 <= x <= n - 2 satisfy x^(n-1) == 1 (mod n). - Arkadiusz Wesolowski, Jul 03 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 3-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Explanation from David Applegate, Feb 20 2017: (Start)
Since the preceding comment appears in a large number of sequences, it might be worth adding a proof.
The number of compositions of n into exactly k parts is binomial(n-1,k-1).
For a p-colored composition of n such that no adjacent parts have the same color, there are exactly p choices for the color of the first part, and p-1 choices for the color of each additional part (any color other than the color of the previous one). So, for a partition into k parts, there are p (p-1)^(k-1) valid colorings.
Thus the number of p-colored compositions of n into exactly k parts such that no adjacent parts have the same color is binomial(n-1,k-1) p (p-1)^(k-1).
The total number of p-colored compositions of n such that no adjacent parts have the same color is then
Sum_{k=1..n} binomial(n-1,k-1) * p * (p-1)^(k-1) = p^n.
To see this, note that the binomial expansion of ((p - 1) + 1)^(n - 1) = Sum_{k = 0..n - 1} binomial(n - 1, k) (p - 1)^k 1^(n - 1 - k) = Sum_{k = 1..n} binomial(n - 1, k - 1) (p - 1)^(k - 1).
(End)
Also, first and least element of the matrix [1, sqrt(2); sqrt(2), 2]^(n+1). - M. F. Hasler, Nov 25 2011
One-half of the row sums of the triangular version of A035002. - J. M. Bergot, Jun 10 2013
Form an array with m(0,n) = m(n,0) = 2^n; m(i,j) equals the sum of the terms to the left of m(i,j) and the sum of the terms above m(i,j), which is m(i,j) = Sum_{k=0..j-1} m(i,k) + Sum_{k=0..i-1} m(k,j). The sum of the terms in antidiagonal(n+1) = 4*a(n). - J. M. Bergot, Jul 10 2013
a(n) = A007051(n+1) - A007051(n), and A007051 are the antidiagonal sums of an array defined by m(0,k) = 1 and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to left of m(n, k) plus those above m(n, k). m(1, k) = A000079(k); m(2, k) = A045623(k + 1); m(k + 1, k) = A084771(k). - J. M. Bergot, Jul 16 2013
Define an array to have m(0,k) = 2^k and m(n,k) = Sum_{c = 0..k - 1} m(n, c) + Sum_{r = 0..n - 1} m(r, k), which is the sum of the terms to the left of m(n, k) plus those above m(n, k). Row n = 0 of the array comprises A000079, column k = 0 comprises A011782, row n = 1 comprises A001792. Antidiagonal sums of the array are a(n): 1 = 3^0, 1 + 2 = 3^1, 2 + 3 + 4 = 3^2, 4 + 7 + 8 + 8 = 3^3. - J. M. Bergot, Aug 02 2013
The sequence with interspersed zeros and o.g.f. x/(1 - 3*x^2), A(2*k) = 0, A(2*k + 1) = 3^k = a(k), k >= 0, can be called hexagon numbers. This is because the algebraic number rho(6) = 2*cos(Pi/6) = sqrt(3) of degree 2, with minimal polynomial C(6, x) = x^2 - 3 (see A187360, n = 6), is the length ratio of the smaller diagonal and the side in the hexagon. Hence rho(6)^n = A(n-1)*1 + A(n)*rho(6), in the power basis of the quadratic number field Q(rho(6)). One needs also A(-1) = 1. See also a Dec 02 2010 comment and the P. Steinbach reference given in A049310. - Wolfdieter Lang, Oct 02 2013
Numbers k such that sigma(3k) = 3k + sigma(k). - Jahangeer Kholdi, Nov 23 2013
All powers of 3 are perfect totient numbers (A082897), since phi(3^n) = 2 * 3^(n - 1) for n > 0, and thus Sum_{i = 0..n} phi(3^i) = 3^n. - Alonso del Arte, Apr 20 2014
The least number k > 0 such that 3^k ends in n consecutive decreasing digits is a 3-term sequence given by {1, 13, 93}. The consecutive increasing digits are {3, 23, 123}. There are 100 different 3-digit endings for 3^k. There are no k-values such that 3^k ends in '012', '234', '345', '456', '567', '678', or '789'. The k-values for which 3^k ends in '123' are given by 93 mod 100. For k = 93 + 100*x, the digit immediately before the run of '123' is {9, 5, 1, 7, 3, 9, 5, 1, 3, 7, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus we see the digit before '123' will never be a 0. So there are no further terms. - Derek Orr, Jul 03 2014
All elements of A^n where A = (1, 1, 1; 1, 1, 1; 1, 1, 1). - David Neil McGrath, Jul 23 2014
Counts all walks of length n (open or closed) on the vertices of a triangle containing a loop at each vertex starting from any given vertex. - David Neil McGrath, Oct 03 2014
a(n) counts walks (closed) on the graph G(1-vertex;1-loop,1-loop,1-loop). - David Neil McGrath, Dec 11 2014
2*a(n-2) counts all permutations of a solitary closed walk of length (n) from the vertex of a triangle that contains 2 loops on each of the remaining vertices. In addition, C(m,k)=2*(2^m)*B(m+k-2,m) counts permutations of walks that contain (m) loops and (k) arcs. - David Neil McGrath, Dec 11 2014
a(n) is the sum of the coefficients of the n-th layer of Pascal's pyramid (a.k.a., Pascal's tetrahedron - see A046816). - Bob Selcoe, Apr 02 2016
Numbers n such that the trinomial x^(2*n) + x^n + 1 is irreducible over GF(2). Of these only the trinomial for n=1 is primitive. - Joerg Arndt, May 16 2016
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
a(n-1) is also the number of compositions of n if the parts can be runs of any length from 1 to n, and can contain any integers from 1 to n. - Gregory L. Simay, May 26 2017
Also the number of independent vertex sets and vertex covers in the n-ladder rung graph n P_2. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-cocktail party graph. - Eric W. Weisstein, Nov 29 2017
a(n-1) is the number of 2-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
a(n) is the number of faces of any dimension (vertices, edges, square faces, etc.) of the n-dimensional hypercube. For example, the 0-dimensional hypercube is a point, and its only face is itself. The 1-dimensional hypercube is a line, which has two vertices and an edge. The 2-dimensional hypercube is a square, which has four vertices, four edges, and a square face. - Kevin Long, Mar 14 2023
Number of pairs (A,B) of subsets of M={1,2,...,n} with union(A,B)=M. For nonempty subsets cf. A058481. - Manfred Boergens, Mar 28 2023
From Jianing Song, Sep 27 2023: (Start)
a(n) is the number of disjunctive clauses of n variables up to equivalence. A disjunctive clause is a propositional formula of the form l_1 OR ... OR l_m, where l_1, ..., l_m are distinct elements in {x_1, ..., x_n, NOT x_1, ..., NOT x_n} for n variables x_1, ... x_n, and no x_i and NOT x_i appear at the same time. For each 1 <= i <= n, we can have neither of x_i or NOT x_i, only x_i or only NOT x_i appearing in a disjunctive clause, so the number of such clauses is 3^n. Viewing the propositional formulas of n variables as functions {0,1}^n -> {0,1}, a disjunctive clause corresponds to a function f such that the inverse image of 0 is of the form A_1 X ... X A_n, where A_i is nonempty for all 1 <= i <= n. Since each A_i has 3 choices ({0}, {1} or {0,1}), we also find that the number of disjunctive clauses of n variables is 3^n.
Equivalently, a(n) is the number of conjunctive clauses of n variables. (End)
The finite subsequence a(2), a(3), a(4), a(5) = 9, 27, 81, 243 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A007283 (see comment there). - Felix Huber, Feb 15 2024
Examples
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 81*x^4 + 243*x^5 + 729*x^6 + 2187*x^7 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Banchoff, Counting the Faces of Higher-Dimensional Cubes, Beyond the Third Dimension: Geometry, computer graphics and higher dimensions, Scientific American Library, 1996.
- Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 7
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 268
- Milan Janjic, Enumerative Formulae for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Hanoi Graph.
- Eric Weisstein's World of Mathematics, Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Ladder Rung Graph.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Eric Weisstein's World of Mathematics, Vertex Cover.
- Doron Zeilberger, The Amazing 3^n Theorem and its even more Amazing Proof [Discovered by Xavier G. Viennot and his École Bordelaise gang], arXiv:1208.2258, 2012.
- Index entries for "core" sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A008776 (2*a(n), and first differences).
a(n) = A092477(n, 2) for n > 0.
a(n) = A217764(0, n).
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Programs
-
Haskell
a000244 = (3 ^) -- Reinhard Zumkeller, Nov 14 2011 a000244_list = iterate (* 3) 1 -- Reinhard Zumkeller, Apr 04 2012
-
Magma
[ 3^n : n in [0..30] ]; // Wesley Ivan Hurt, Jul 04 2014
-
Maple
A000244 := n->3^n; [ seq(3^n, n=0..50) ]; A000244:=-1/(-1+3*z); # Simon Plouffe in his 1992 dissertation.
-
Mathematica
Table[3^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *) 3^Range[0, 30] (* Wesley Ivan Hurt, Jul 04 2014 *) LinearRecurrence[{3}, {1}, 20] (* Eric W. Weisstein, Sep 21 2017 *) CoefficientList[Series[1/(1 - 3 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *) NestList[3#&,1,30] (* Harvey P. Dale, Feb 20 2020 *)
-
Maxima
makelist(3^n, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A000244(n) = 3^n \\ Michael B. Porter, Nov 03 2009
-
Python
def A000244(n): return 3**n # Chai Wah Wu, Nov 10 2022
-
Scala
val powersOf3: LazyList[BigInt] = LazyList.iterate(1: BigInt)(_ * 3) (0 to 26).map(powersOf3()) // _Alonso del Arte, May 03 2020
Formula
a(n) = 3^n.
a(0) = 1; a(n) = 3*a(n-1).
G.f.: 1/(1-3*x).
E.g.f.: exp(3*x).
a(n) = n!*Sum_{i + j + k = n, i, j, k >= 0} 1/(i!*j!*k!). - Benoit Cloitre, Nov 01 2002
a(n) = Sum_{k = 0..n} 2^k*binomial(n, k), binomial transform of A000079.
a(n) = A090888(n, 2). - Ross La Haye, Sep 21 2004
a(n) = 2^(2n) - A005061(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 0). - Ross La Haye, Jan 11 2006
Hankel transform of A007854. - Philippe Deléham, Nov 26 2006
a(n) = 2*StirlingS2(n+1,3) + StirlingS2(n+2,2) = 2*(StirlingS2(n+1,3) + StirlingS2(n+1,2)) + 1. - Ross La Haye, Jun 26 2008
a(n) = 2*StirlingS2(n+1, 3) + StirlingS2(n+2, 2) = 2*(StirlingS2(n+1, 3) + StirlingS2(n+1, 2)) + 1. - Ross La Haye, Jun 09 2008
Sum_{n >= 0} 1/a(n) = 3/2. - Gary W. Adamson, Aug 29 2008
If p(i) = Fibonacci(2i-2) and if A is the Hessenberg matrix of order n defined by A(i, j) = p(j-i+1), (i <= j), A(i, j) = -1, (i = j+1), and A(i, j) = 0 otherwise, then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 08 2010
G.f. A(x) = M(x)/(1-M(x))^2, M(x) - o.g.f for Motzkin numbers (A001006). - Vladimir Kruchinin, Aug 18 2010
a(n) = A133494(n+1). - Arkadiusz Wesolowski, Jul 27 2011
2/3 + 3/3^2 + 2/3^3 + 3/3^4 + 2/3^5 + ... = 9/8. [Jolley, Summation of Series, Dover, 1961]
a(n) = Sum_{k=0..n} A207543(n,k)*4^(n-k). - Philippe Deléham, Feb 25 2012
a(n) = Sum_{k=0..n} A125185(n,k). - Philippe Deléham, Feb 26 2012
Sum_{n > 0} Mobius(n)/a(n) = 0.181995386702633887827... (see A238271). - Alonso del Arte, Aug 09 2012. See also the sodium 3s orbital energy in table V of J. Chem. Phys. 53 (1970) 348.
a(n) = (tan(Pi/3))^(2*n). - Bernard Schott, May 06 2022
a(n-1) = binomial(2*n-1, n) + Sum_{k >= 1} binomial(2*n, n+3*k)*(-1)^k. - Greg Dresden, Oct 14 2022
G.f.: Sum_{k >= 0} x^k/(1-2*x)^(k+1). - Kevin Long, Mar 14 2023
A000312 a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).
1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979
Offset: 0
Comments
Also number of labeled pointed rooted trees (or vertebrates) on n nodes.
For n >= 1 a(n) is also the number of n X n (0,1) matrices in which each row contains exactly one entry equal to 1. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
Also the number of labeled rooted trees on (n+1) nodes such that the root is lower than its children. Also the number of alternating labeled rooted ordered trees on (n+1) nodes such that the root is lower than its children. - Cedric Chauve (chauve(AT)lacim.uqam.ca), Mar 27 2002
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i, j)!)) * ((n!/(n - p(i)))!/(Product_{j=1..d(i)} m(i, j)!)). - Thomas Wieder, May 18 2005
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n) is the total number of leaves in all (n+1)^(n-1) trees on {0,1,2,...,n} rooted at 0. For example, with edges directed away from the root, the trees on {0,1,2} are {0->1,0->2},{0->1->2},{0->2->1} and contain a total of a(2)=4 leaves. - David Callan, Feb 01 2007
Limit_{n->infinity} A000169(n+1)/a(n) = exp(1). Convergence is slow, e.g., it takes n > 74 to get one decimal place correct and n > 163 to get two of them. - Alonso del Arte, Jun 20 2011
Also smallest k such that binomial(k, n) is divisible by n^(n-1), n > 0. - Michel Lagneau, Jul 29 2013
For n >= 2 a(n) is represented in base n as "one followed by n zeros". - R. J. Cano, Aug 22 2014
Number of length-n words over the alphabet of n letters. - Joerg Arndt, May 15 2015
Number of prime parking functions of length n+1. - Rui Duarte, Jul 27 2015
The probability density functions p(x, m=q, n=q, mu=1) = A000312(q)*E(x, q, q) and p(x, m=q, n=1, mu=q) = (A000312(q)/A000142(q-1))*x^(q-1)*E(x, q, 1), with q >= 1, lead to this sequence, see A163931, A274181 and A008276. - Johannes W. Meijer, Jun 17 2016
Satisfies Benford's law [Miller, 2015]. - N. J. A. Sloane, Feb 12 2017
A signed version of this sequence apart from the first term (1, -4, -27, 256, 3125, -46656, ...), has the following property: for every prime p == 1 (mod 2n), (-1)^(n(n-1)/2)*n^n = A057077(n)*a(n) is always a 2n-th power residue modulo p. - Jianing Song, Sep 05 2018
From Juhani Heino, May 07 2019: (Start)
n^n is both Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)
and Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)*i.
The former is the familiar binomial distribution of a throw of n n-sided dice, according to how many times a required side appears, 0 to n. The latter is the same but each term is multiplied by its amount. This means that if the bank pays the player 1 token for each die that has the chosen side, it is always a fair game if the player pays 1 token to enter - neither bank nor player wins on average.
Examples:
2-sided dice (2 coins): 4 = 1 + 2 + 1 = 1*0 + 2*1 + 1*2 (0 omitted from now on);
3-sided dice (3 long triangular prisms): 27 = 8 + 12 + 6 + 1 = 12*1 + 6*2 + 1*3;
4-sided dice (4 long square prisms or 4 tetrahedrons): 256 = 81 + 108 + 54 + 12 + 1 = 108*1 + 54*2 + 12*3 + 1*4;
5-sided dice (5 long pentagonal prisms): 3125 = 1024 + 1280 + 640 + 160 + 20 + 1 = 1280*1 + 640*2 + 160*3 + 20*4 + 1*5;
6-sided dice (6 cubes): 46656 = 15625 + 18750 + 9375 + 2500 + 375 + 30 + 1 = 18750*1 + 9375*2 + 2500*3 + 375*4 + 30*5 + 1*6.
(End)
For each n >= 1 there is a graph on a(n) vertices whose largest independent set has size n and whose independent set sequence is constant (specifically, for each k=1,2,...,n, the graph has n^n independent sets of size k). There is no graph of smaller order with this property (Ball et al. 2019). - David Galvin, Jun 13 2019
For n >= 2 and 1 <= k <= n, a(n)*(n + 1)/4 + a(n)*(k - 1)*(n + 1 - k)/2*n is equal to the sum over all words w = w(1)...w(n) of length n over the alphabet {1, 2, ..., n} of the following quantity: Sum_{i=1..w(k)} w(i). Inspired by Problem 12432 in the AMM (see links). - Sela Fried, Dec 10 2023
Also, dimension of the unique cohomology group of the smallest interval containing the poset of partitions decorated by Perm, i.e. the poset of pointed partitions. - Bérénice Delcroix-Oger, Jun 25 2025
Examples
G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 62, 63, 87.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 173, #39.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Kenny Lau, Table of n, a(n) for n = 0..385 [First 100 terms computed by T. D. Noe]
- Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
- Arthur T. Benjamin and Fritz Juhnke, Another way of counting n^n, SIAM J. Discrete Math., Vol. 5, No. 3 (1992), pp. 377-379. - _N. J. A. Sloane_, Jun 09 2011
- H. Bottomley, Illustration of initial terms.
- H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, The Mathematical Intelligencer, Vol. 20 (4), 1998, pp. 25-29. (Sequence appears as formula in Eq. (8))
- C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 34.
- Frank Ellermann, Illustration of binomial transforms.
- José María Grau and Antonio M. Oller-Marcén, On the last digit and the last non-zero digit of n^n in base b, Bulletin of the Korean Mathematical Society, Vol. 51, No. 5 (2014), pp. 1325-1337; arXiv preprint, arXiv:1203.4066 [math.NT], 2012.
- Nick Hobson, Solution to puzzle 48: Exponential equation.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 36.
- Steven J. Miller (ed.), Exercises to "The Theory and Applications of Benford's Law", Princeton University Press, 2015.
- Mustafa Obaid et al., The number of complete exceptional sequences for a Dynkin algebra, arXiv preprint arXiv:1307.7573 [math.RT], 2013.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- E. Vigren (Proposer), Problem 12432, Amer. Math. Monthly 130 (2023), p. 953.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
- Eric Weisstein's World of Mathematics, Hadamard's Maximum Determinant Problem.
- Eric Weisstein's World of Mathematics, Hankel Matrix.
- Dimitri Zvonkine, An algebra of power series..., arXiv:math/0403092 [math.AG], 2004.
- Index entries for "core" sequences
- Index entries for sequences related to rooted trees
- Index entries for sequences related to Benford's law
Crossrefs
Programs
-
Haskell
a000312 n = n ^ n a000312_list = zipWith (^) [0..] [0..] -- Reinhard Zumkeller, Jul 07 2012
-
Maple
A000312 := n->n^n: seq(A000312(n), n=0..17);
-
Mathematica
Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *) Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *) a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *) a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *) a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
-
Maxima
A000312[n]:=if n=0 then 1 else n^n$ makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
PARI
{a(n) = n^n};
-
PARI
is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
-
PARI
{a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
-
Python
def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022
Formula
a(n-1) = -Sum_{i=1..n} (-1)^i*i*n^(n-1-i)*binomial(n, i). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
E.g.f.: 1/(1 + W(-x)), W(x) = principal branch of Lambert's function.
a(n) = Sum_{k>=0} binomial(n, k)*Stirling2(n, k)*k! = Sum_{k>=0} A008279(n,k)*A048993(n,k) = Sum_{k>=0} A019538(n,k)*A007318(n,k). - Philippe Deléham, Dec 14 2003
E.g.f.: 1/(1 - T), where T = T(x) is Euler's tree function (see A000169).
Comment on power series with denominators a(n): Let f(x) = 1 + Sum_{n>=1} x^n/n^n. Then as x -> infinity, f(x) ~ exp(x/e)*sqrt(2*Pi*x/e). - Philippe Flajolet, Sep 11 2008
E.g.f.: 1 - exp(W(-x)) with an offset of 1 where W(x) = principal branch of Lambert's function. - Vladimir Kruchinin, Sep 15 2010
a(n) = (n-1)*a(n-1) + Sum_{i=1..n} binomial(n, i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
With an offset of 1, the e.g.f. is the compositional inverse ((x - 1)*log(1 - x))^(-1) = x + x^2/2! + 4*x^3/3! + 27*x^4/4! + .... - Peter Bala, Dec 09 2011
a(n) = denominator((1 + 1/n)^n) for n > 0. - Jean-François Alcover, Jan 14 2013
a(n) = A089072(n,n) for n > 0. - Reinhard Zumkeller, Mar 18 2013
a(n) = (n-1)^(n-1)*(2*n) + Sum_{i=1..n-2} binomial(n, i)*(i^i*(n-i-1)^(n-i-1)), n > 1, a(0) = 1, a(1) = 1. - Vladimir Kruchinin, Nov 28 2014
log(a(n)) = lim_{k->infinity} k*(n^(1+1/k) - n). - Richard R. Forberg, Feb 04 2015
From Ilya Gutkovskiy, Jun 18 2016: (Start)
Sum_{n>=1} 1/a(n) = 1.291285997... = A073009.
Sum_{n>=1} 1/a(n)^2 = 1.063887103... = A086648.
Sum_{n>=1} n!/a(n) = 1.879853862... = A094082. (End)
A000169(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 23 2016
a(n) = n!*Product_{k=1..n} binomial(n, k)/Product_{k=1..n-1} binomial(n-1, k) = n!*A001142(n)/A001142(n-1). - Tony Foster III, Sep 05 2018
a(n-1) = abs(p_n(2-n)), for n > 2, the single local extremum of the n-th row polynomial of A055137 with Bagula's sign convention. - Tom Copeland, Nov 15 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = A083648. - Amiram Eldar, Jun 25 2021
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = e (see Brothers/Knox link). - Harlan J. Brothers, Oct 24 2021
Conjecture: a(n) = Sum_{i=0..n} A048994(n, i) * A048993(n+i, n) for n >= 0; proved by Mike Earnest, see link at A354797. - Werner Schulte, Jun 19 2022
A066099 Triangle read by rows, in which row n lists the compositions of n in reverse lexicographic order.
1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 4, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 2, 3, 1, 1, 1, 2, 4, 2, 3
Offset: 1
Comments
The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is (list-)reversed lexicographic; see the example by Omar E. Pol. - Joerg Arndt, Sep 03 2013
This is the standard ordering for compositions in this database; it is similar to the Mathematica ordering for partitions (A080577). Other composition orderings include A124734 (similar to the Abramowitz & Stegun ordering for partitions, A036036), A108244 (similar to the Maple partition ordering, A080576), etc (see crossrefs).
Factorize each term in A057335; sequence records the values of the resulting exponents. It also runs through all possible permutations of multiset digits.
This can be regarded as a table in two ways: with each composition as a row, or with the compositions of each integer as a row. The first way has A000120 as row lengths and A070939 as row sums; the second has A001792 as row lengths and A001788 as row sums. - Franklin T. Adams-Watters, Nov 06 2006
This sequence includes every finite sequence of positive integers. - Franklin T. Adams-Watters, Nov 06 2006
Compositions (or ordered partitions) are also generated in sequence A101211. - Alford Arnold, Dec 12 2006
The equivalent sequence for partitions is A228531. - Omar E. Pol, Sep 03 2013
The sole partition of zero has no components, not a single component of length one. Hence the first nonempty row is row 1. - Franklin T. Adams-Watters, Apr 02 2014 [Edited by Andrey Zabolotskiy, May 19 2018]
See sequence A261300 for another version where the terms of each composition are concatenated to form one single integer: (0, 1, 2, 11, 3, 21, 12, 111,...). This also shows how the terms can be obtained from the binary numbers A007088, cf. Arnold's first Example. - M. F. Hasler, Aug 29 2015
The k-th composition in the list is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This is described as the standard ordering used in the OEIS, although the sister sequence A228351 is also sometimes considered to be canonical. Both sequences define a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, May 19 2020
First differences of A030303 = positions of bits 1 in the concatenation A030190 (= A030302) of numbers written in binary (A007088). - Indices of record values (= first occurrence of n) are given by A005183: a(A005183(n)) = n, cf. FORMULA for more. - M. F. Hasler, Oct 12 2020
The geometric mean approaches the Somos constant (A112302). - Jwalin Bhatt, Feb 10 2025
Examples
A057335 begins 1 2 4 6 8 12 18 30 16 24 36 ... so we can write 1 2 1 3 2 1 1 4 3 2 2 1 1 1 1 ... . . 1 . 1 2 1 . 1 2 1 3 2 1 1 ... . . . . . . 1 . . . 1 . 1 2 1 ... . . . . . . . . . . . . . . 1 ... and the columns here gives the rows of the triangle, which begins 1 2; 1 1 3; 2 1; 1 2; 1 1 1 4; 3 1; 2 2; 2 1 1; 1 3; 1 2 1; 1 1 2; 1 1 1 1 ... From _Omar E. Pol_, Sep 03 2013: (Start) Illustration of initial terms: ----------------------------------- n j Diagram Composition j ----------------------------------- . _ 1 1 |_| 1; . _ _ 2 1 | _| 2, 2 2 |_|_| 1, 1; . _ _ _ 3 1 | _| 3, 3 2 | _|_| 2, 1, 3 3 | | _| 1, 2, 3 4 |_|_|_| 1, 1, 1; . _ _ _ _ 4 1 | _| 4, 4 2 | _|_| 3, 1, 4 3 | | _| 2, 2, 4 4 | _|_|_| 2, 1, 1, 4 5 | | _| 1, 3, 4 6 | | _|_| 1, 2, 1, 4 7 | | | _| 1, 1, 2, 4 8 |_|_|_|_| 1, 1, 1, 1; (End)
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..5120 (through compositions of 10)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
Lists of compositions of integers: this sequence (reverse lexicographic order; minus one gives A108730), A228351 (reverse colexicographic order - every composition is reversed; minus one gives A163510), A228369 (lexicographic), A228525 (colexicographic), A124734 (length, then lexicographic; minus one gives A124735), A296774 (length, then reverse lexicographic), A337243 (length, then colexicographic), A337259 (length, then reverse colexicographic), A296773 (decreasing length, then lexicographic), A296772 (decreasing length, then reverse lexicographic), A337260 (decreasing length, then colexicographic), A108244 (decreasing length, then reverse colexicographic), also A101211 and A227736 (run lengths of bits).
Cf. lists of partitions of integers, or multisets of integers: A026791 and crosserfs therein, A112798 and crossrefs therein.
See link for additional crossrefs pertaining to standard compositions.
Programs
-
Haskell
a066099 = (!!) a066099_list a066099_list = concat a066099_tabf a066099_tabf = map a066099_row [1..] a066099_row n = reverse $ a228351_row n -- (each composition as a row) -- Peter Kagey, Aug 25 2016
-
Mathematica
Table[FactorInteger[Apply[Times, Map[Prime, Accumulate @ IntegerDigits[n, 2]]]][[All, -1]], {n, 41}] // Flatten (* Michael De Vlieger, Jul 11 2017 *) stc[n_] := Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]] // Reverse; Table[stc[n], {n, 0, 20}] // Flatten (* Gus Wiseman, May 19 2020 *) Table[Reverse @ LexicographicSort @ Flatten[Permutations /@ Partitions[n], 1], {n, 10}] // Flatten (* Eric W. Weisstein, Jun 26 2023 *)
-
PARI
arow(n) = {local(v=vector(n),j=0,k=0); while(n>0,k++; if(n%2==1,v[j++]=k;k=0);n\=2); vector(j,i,v[j-i+1])} \\ returns empty for n=0. - Franklin T. Adams-Watters, Apr 02 2014
-
Python
from itertools import islice from itertools import accumulate, count, groupby, islice def A066099_gen(): for i in count(1): yield [len(list(g)) for _,g in groupby(accumulate(int(b) for b in bin(i)[2:]))] A066099 = list(islice(A066099_gen(), 120)) # Jwalin Bhatt, Feb 28 2025
-
Sage
def a_row(n): return list(reversed(Compositions(n))) flatten([a_row(n) for n in range(1,6)]) # Peter Luschny, May 19 2018
Formula
Extensions
Edited with additional terms by Franklin T. Adams-Watters, Nov 06 2006
0th row removed by Andrey Zabolotskiy, May 19 2018
A001700 a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.
1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0
Comments
To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).
Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003
Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - David W. Wilson, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)
Also total number of leaves in all ordered trees with n + 1 edges.
Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - Naohiro Nomoto, Apr 07 2001
Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002
Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - Benoit Cloitre, May 07 2002
Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - Robert G. Wilson v
Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - Robert G. Wilson v, Aug 01 2002
Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - Emeric Deutsch, Jan 02 2003
a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - Benoit Cloitre, Aug 26 2003
a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - Frank Ellermann. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.
The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006
The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - Thomas Wieder, May 24 2008
Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - R. J. Mathar, Nov 11 2008
With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - Geoffrey Critzer, Feb 22 2009
The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - Paul Barry, Apr 21 2009
Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010
Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - Gary W. Adamson, May 15 2009
The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - Christiaan van de Woestijne, Jan 25 2011
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - Reinhard Zumkeller, Jun 08 2011
a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - John M. Campbell, Jul 17 2011
For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - John M. Campbell, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]
a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - Dennis P. Walsh, Nov 09 2011
Equals row sums of triangle A205945. - Gary W. Adamson, Feb 01 2012
a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - Matuszka Tamás, Mar 06 2013
a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - John Molokach, Sep 26 2013
For n > 0: largest terms of Zigzag matrices as defined in A088961. - Reinhard Zumkeller, Oct 25 2013
Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - Philippe Beaudoin, May 14 2014; corrected by Jon E. Schoenfield, Nov 23 2014
When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - Bob Selcoe, Jul 16 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].
Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).
Equals A001813/2 omitting the leading 1 there. (End)
Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - N. J. A. Sloane, Jun 19 2015
The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - Gary W. Adamson, Jun 23 2015
a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - Ran Pan, Oct 08 2015
a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - Wolfdieter Lang, Oct 11 2015
Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - Nachum Dershowitz, Mar 30 2016
a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - Anton Zakharov, Jul 04 2016
The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - Enrique Navarrete, Feb 12 2018
a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Total number of nodes summed over all Dyck paths of semilength n. - Alois P. Heinz, Mar 08 2020
a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - Fabio Visonà, May 21 2022
Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - Xiaohan Zhang, Nov 01 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - Lara Pudwell, Apr 10 2023
Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - Michael Richard, Jun 12 2023
Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - Marc Munar, Oct 10 2023
a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - Juan B. Gil, Jan 03 2024
a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - Mehmet A. Ates, Feb 15 2024
a(n) is the independence number of the twisted odd graph O^(sigma)(n+2). - _Miquel A. Fiol, Aug 26 2024
a(n) is the number of non-descending sequences with length n and the last number is less or equal to n. a(n) is also the number of integer partitions (of any positive integer) with length n and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024
a(n) is the number of triangulations of a once-punctured (n+1)-gon [from Fontaine & Plamondon's Theorem 3.6]. - Esther Banaian, May 06 2025
Examples
There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012 a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - _Wolfdieter Lang_, Oct 11 2015
References
- H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).
- A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.
- Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.
- L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Matuszka Tamás, Table of n, a(n) for n = 0..1200 (first 100 terms from T. D. Noe)
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011), #11.2.6, theorem 4.
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Martin Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- Elena Barcucci, Andrea Frosini, and Simone Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005), 62-78.
- Elena Barcucci, Antonio Bernini, and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018), Vol. 2113.
- Jean-Luc Baril, David Bevan, and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 5.
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 17.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), Article 06.2.4.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., 22 (2019), Article 19.1.3.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Antonio Bernini, Filippo Disanto, Renzo Pinzani, and Simone Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007), #07.9.7.
- Ciprian Borcea and Ileana Streinu, On the number of embeddings of minimally rigid graphs, arXiv:math/0207126 [math.MG], 2002.
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106. See Eq. (1).
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers.
- Jean-Paul Bultel and Samuele Giraudo, Combinatorial Hopf algebras from PROs, arXiv:1406.6903 [math.CO], 2014. [DOI]
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, 8 (2005), Article 05.1.8.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., 3 (2000), #00.1.5.
- Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, Mutation effects in ordered trees, arXiv:1410.1249 [math.CO], 2014.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, 18 (2015), Article 15.5.8.
- Nachum Dershowitz, 1700 Forests, arXiv:1608.08740 [cs.DM], 2016.
- Leonard E. Dickson, On the Inscription of Regular Polygons, Annals of Mathematics, Vol. 9, No. 1/6 (1894 - 1895), pp. 73-84.
- Leonard E. Dickson, Problem 44, The American Mathematical Monthly, Vol. 2, No. 7/8 (Jul. - Aug., 1895), pp. 229-230.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
- Miquel A. Fiol, E. Garriga, and J. L. A. Yebra, On twisted odd graphs, Combin. Probab. Comput. 9 (2000), 227-240.
- Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, 21 (2018), Article 18.1.2.
- B. Fontaine and P.-G. Plamondon, Counting friezes in type D_n, Journal of Algebraic Combinatorics, 44.2 (2016), 433-445; arXiv:1409.3698 [math.CO], 2014-2016.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Juan B. Gil, Emma G. Hoover, and Jessica A. Shearer, Bijections between colored compositions, Dyck paths, and polygon partitions, arXiv:2403.04575 [math.CO], 2024. See p. 4.
- N. Gromov and P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism, arXiv:1205.5288 [hep-th], 2012. - From _N. J. A. Sloane_, Oct 23 2012
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, 3 (2000), Article #00.1.6.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 145.
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4(2) (2012) 260-288.
- Milan Janjic, Two Enumerative Functions.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math. 101 (2018), 232-265.
- Dmitry Kruchinin, Superposition's properties of logarithmic generating functions, arXiv:1109.1683 [math.CO], 2011-2015.
- Markus Kuba and Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics 74(2) (2019), 216-239.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., 3 (2000), #00.2.4.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 40.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- T. Mansour and M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) 124(2) (2014), pp. 127-140.
- M. D. McIlroy, Letter to N. J. A. Sloane (no date).
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, 21 (2018), Article 18.1.3.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
- M. Munar, S. Massanet, and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, Volume 621, 2023, 708-728.
- A. Nkwanta, Riordan matrices and higher-dimensional lattice walks, J. Stat. Plann. Infer. 140 (2010), 2321-2334.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., 4 (2001), #01.2.1.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- Louis Shapiro, Problem 10753 Amer. Math. Monthly, 106(8) (1999), p. 777.
- Louis Shapiro et al., Leaves of Ordered Trees: 10753, Amer. Math. Monthly, 108(9) (Nov., 2001), 873-874.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See pp. 96, 98-99.
- Eric Weisstein's World of Mathematics, Binomial Coefficient.
- Eric Weisstein's World of Mathematics, Odd Graph.
- Index entries for "core" sequences.
Crossrefs
Cf. A000110, A007318, A030662, A046097, A060897-A060900, A049027, A076025, A076026, A060150, A001263, A005773, A001405, A132813, A134285.
Equals A000984(n+1)/2.
Diagonals 1 and 2 of triangle A100257.
Second row of array A102539.
Column of array A073165.
Row sums of A103371. - Susanne Wienand, Oct 22 2011
Cf. A002054: C(2*n+1, n-1). - Bruno Berselli, Jan 20 2014
Programs
-
GAP
List([0..30],n->Binomial(2*n+1,n+1)); # Muniru A Asiru, Feb 26 2019
-
Haskell
a001700 n = a007318 (2*n+1) (n+1) -- Reinhard Zumkeller, Oct 25 2013
-
Magma
[Binomial(2*n, n)/2: n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
-
Maple
A001700 := n -> binomial(2*n+1,n+1); seq(A001700(n), n=0..20); A001700List := proc(m) local A, P, n; A := [1]; P := [1]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]); A := [op(A), P[-1]] od; A end: A001700List(27); # Peter Luschny, Mar 24 2022
-
Mathematica
Table[ Binomial[2n + 1, n + 1], {n, 0, 23}] CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
-
Maxima
B(n,a,x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a,t,0,20),t,n)*n!; makelist((-1)^(n)*B(n,n+1,-n-1)/n!,n,0,10); /* Vladimir Kruchinin, Apr 06 2016 */
-
PARI
a(n)=binomial(2*n+1,n+1)
-
PARI
z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ Altug Alkan, Oct 11 2015
-
Python
from _future_ import division A001700_list, b = [], 1 for n in range(10**3): A001700_list.append(b) b = b*(4*n+6)//(n+2) # Chai Wah Wu, Jan 26 2016
-
Sage
[rising_factorial(n+1,n+1)/factorial(n+1) for n in (0..22)] # Peter Luschny, Nov 07 2011
Formula
a(n-1) = binomial(2*n, n)/2 = A000984(n)/2 = (2*n)!/(2*n!*n!).
D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.
G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).
L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - Vladimir Kruchinin, Aug 10 2010
G.f.: 2F1([1, 3/2]; [2]; 4*x). - Paul Barry, Jan 23 2009
G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - Paul Barry, May 06 2009
G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - Paul Barry, Sep 07 2009
O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - Wolfdieter Lang, Sep 02 2012
Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - Wolfdieter Lang, Dec 11 1999
a(n) = Sum_{k=0..n} C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - Benoit Cloitre, Oct 19 2002
a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - Paul Barry, Nov 02 2004
a(n) = 4^n*binomial(n+1/2, n)/(n+1). - Paul Barry, May 10 2005
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - Michael Somos, Jun 22 2005
E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - Karol A. Penson, Oct 11 2001
Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - Gary W. Adamson, Apr 25 2006
a(n) = A122366(n,n). - Reinhard Zumkeller, Aug 30 2006
a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - Jonathan Vos Post, Apr 09 2007; [Corrected and shortened by Giovanni Ciriani, Mar 26 2019]
a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - William A. Tedeschi, Feb 27 2008
a(n) = (2*n + 1)*A000108(n). - Paul Barry, Aug 21 2007
Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A132813. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A134285. - Gary W. Adamson, Nov 19 2007
a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - Joseph Abate, Jun 11 2010
Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - Benjamin Phillabaum, Feb 20 2011
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
...
Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - Peter Luschny, Oct 24 2011
a(n) = Pochhammer(n+1, n+1)/(n+1)!. - Peter Luschny, Nov 07 2011
E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - Peter Luschny, May 06 2014
a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - Vladimir Kruchinin, Apr 06 2016
a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). Andres Cicuttin, Apr 06 2016
a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. Andres Cicuttin, Apr 07 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.
Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).
Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - Mikhail Kurkov, Feb 20 2021
a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - Greg Dresden, Oct 11 2022
a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023
Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - Peter Bala, Sep 06 2023
Extensions
Name corrected by Paul S. Coombes, Jan 11 2012
Name corrected by Robert Tanniru, Feb 01 2014
A001787 a(n) = n*2^(n-1).
0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0
Comments
Number of edges in an n-dimensional hypercube.
Number of 132-avoiding permutations of [n+2] containing exactly one 123 pattern. - Emeric Deutsch, Jul 13 2001
Number of ways to place n-1 nonattacking kings on a 2 X 2(n-1) chessboard for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
(-1) times the determinant of matrix A_{i,j} = -|i-j|, 0 <= i,j <= n.
a(n) is the number of ones in binary numbers 1 to 111...1 (n bits). a(n) = A000337(n) - A000337(n-1) for n = 2,3,... . - Emeric Deutsch, May 24 2003
The number of 2 X n 0-1 matrices containing n+1 1's and having no zero row or column. The number of spanning trees of the complete bipartite graph K(2,n). This is the case m = 2 of K(m,n). See A072590. - W. Edwin Clark, May 27 2003
Binomial transform of 0,1,2,3,4,5,... (A001477). Without the initial 0, binomial transform of odd numbers.
With an additional leading zero, [0,0,1,4,...] this is the binomial transform of the integers repeated A004526. Its formula is then (2^n*(n-1) + 0^n)/4. - Paul Barry, May 20 2003
Number of zeros in all different (n+1)-bit integers. - Ralf Stephan, Aug 02 2003
From Lekraj Beedassy, Jun 03 2004: (Start)
Final element of a summation table (as opposed to a difference table) whose first row consists of integers 0 through n (or first n+1 nonnegative integers A001477); illustrating the case n=5:
0 1 2 3 4 5
1 3 5 7 9
4 8 12 16
12 20 28
32 48
80
and the final element is a(5)=80. (End)
This sequence and A001871 arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for this sequence and k = 4 for A001871.
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |R|. - Ross La Haye, Sep 21 2004
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Number of subsequences 00 in all binary words of length n+1. Example: a(2)=4 because in 000,001,010,011,100,101,110,111 the sequence 00 occurs 4 times. - Emeric Deutsch, Apr 04 2005
If you expand the n-factor expression (a+1)*(b+1)*(c+1)*...*(z+1), there are a(n) variables in the result. For example, the 3-factor expression (a+1)*(b+1)*(c+1) expands to abc+ab+ac+bc+a+b+c+1 with a(3) = 12 variables. - David W. Wilson, May 08 2005
An inverse Chebyshev transform of n^2, where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), c(x) the g.f. of A000108. - Paul Barry, May 13 2005
The number of never-decreasing positive integer sequences of length n with a maximum value of 2*n. - Ben Paul Thurston, Nov 13 2006
Total size of all the subsets of an n-element set. For example, a 2-element set has 1 subset of size 0, 2 subsets of size 1 and 1 of size 2. - Ross La Haye, Dec 30 2006
Convolution of the natural numbers [A000027] and A045623 beginning [0,1,2,5,...]. - Ross La Haye, Feb 03 2007
If M is the matrix (given by rows) [2,1;0,2] then the sequence gives the (1,2) entry in M^n. - Antonio M. Oller-Marcén, May 21 2007
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly one u. Example: a(2)=4 because we have uv, vu, uw and wu. - Zerinvary Lajos, Dec 27 2007
A member of the family of sequences defined by a(n) = n*[c(1)*...*c(r)]^(n-1); c(i) integer. This sequence has c(1)=2, A027471 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
a(n) is the number of ways to split {1,2,...,n-1} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n-1} and then select a subset from each interval. - Geoffrey Critzer, Jan 31 2009
Equals the Jacobsthal sequence A001045 convolved with A003945: (1, 3, 6, 12, ...). - Gary W. Adamson, May 23 2009
Starting with offset 1 = A059570: (1, 2, 6, 14, 34, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Equals the first left hand column of A167591. - Johannes W. Meijer, Nov 12 2009
The number of tatami tilings of an n X n square with n monomers is n*2^(n-1). - Frank Ruskey, Sep 25 2010
Under T. D. Noe's variant of the hypersigma function, this sequence gives hypersigma(2^n): a(n) = A191161(A000079(n)). - Alonso del Arte, Nov 04 2011
Number of Dyck (n+2)-paths with exactly one valley at height 1 and no higher valley. - David Scambler, Nov 07 2011
Equals triangle A059260 * A016777 as a vector, where A016777 = (3n + 1): [1, 4, 7, 10, 13, ...]. - Gary W. Adamson, Mar 06 2012
Main transitions in systems of n particles with spin 1/2 (see A212697 with b=2). - Stanislav Sykora, May 25 2012
Let T(n,k) be the triangle with (first column) T(n,1) = 2*n-1 for n >= 1, otherwise T(n,k) = T(n,k-1) + T(n-1,k-1), then a(n) = T(n,n). - J. M. Bergot, Jan 17 2013
Sum of all parts of all compositions (ordered partitions) of n. The equivalent sequence for partitions is A066186. - Omar E. Pol, Aug 28 2013
Starting with a(1)=1: powers of 2 (A000079) self-convolved. - Bob Selcoe, Aug 05 2015
Coefficients of the series expansion of the normalized Schwarzian derivative -S{p(x)}/6 of the polynomial p(x) = -(x-x1)*(x-x2) with x1 + x2 = 1 (cf. A263646). - Tom Copeland, Nov 02 2015
a(n) is the number of North-East lattice paths from (0,0) to (n+1,n+1) that have exactly one east step below y = x-1 and no east steps above y = x+1. Details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
Also the number of maximal and maximum cliques in the n-hypercube graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Let [n]={1,2,...,n}; then a(n-1) is the total number of elements missing in proper subsets of [n] that contain n to form [n]. For example, for n = 3, a(2) = 4 since the proper subsets of [3] that contain 3 are {3}, {1,3}, {2,3} and the total number of elements missing in these subsets to form [3] is 4: 2 in the first subset, 1 in the second, and 1 in the third. - Enrique Navarrete, Aug 08 2020
Number of 3-permutations of n elements avoiding the patterns 132, 231. See Bonichon and Sun. - Michel Marcus, Aug 19 2022
Examples
a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3. x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ... a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..500
- Rémi Abgrall and Wasilij Barsukow, Extensions of Active Flux to arbitrary order of accuracy, arXiv:2208.14476 [math.NA], 2022.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Douglas W. Bass and I. Hal Sudborough, Hamilton decompositions and (n/2)-factorizations of hypercubes, J. Graph Algor. Appl., Vol. 7, No. 1 (2003), pp. 79-98.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Harlan J. Brothers, Pascal's Prism: Supplementary Material.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Frank Ellermann, Illustration of binomial transforms
- Mohamed Elkadi and Bernard Mourrain, Symbolic-numeric methods for solving polynomial equations and applications, Chap 3. of A. Dickenstein and I. Z. Emiris, eds., Solving Polynomial Equations, Springer, 2005, pp. 126-168. See p. 152.
- Alejandro Erickson, Frank Ruskey, Mark Schurch and Jennifer Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42, arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- Frank A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- Frank A. Haight, Letter to N. J. A. Sloane, n.d.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Jul 06, 1976
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=4, q=-4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 408. (Dead link)
- Milan Janjić, Two Enumerative Functions.
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn, and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946). 187-203.
- Kenji Kimura and Saburo Higuchi, Monte Carlo estimation of the number of tatami tilings, International Journal of Modern Physics C, Vol. 27, No. 11 (2016), 1650128, arXiv preprint, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004). (Dead link)
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag., 72 (1999), 231-235 (see page 234).
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. See Eq.(3).
- Duško Letić, Nenad Cakić, Branko Davidović, Ivana Berković and Eleonora Desnica, Some certain properties of the generalized hypercubical functions, Advances in Difference Equations, 2011, 2011:60.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Michael Penn, on the alternating sum of subsets, YouTube video, 2021.
- Michael Penn, Rare proof of well-known sum, YouTube video, 2023.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Maxwell Phillips, Ahmed Ammar, and Firas Hassan, A Generalized Multi-Level Structure for High-Precision Binary Decoders, IEEE 67th Int'l Midwest Symp. Circ. Sys. (MWSCAS 2024), 42-46.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Lara Pudwell, Nathan Chenette and Manda Riehl, Statistics on Hypercube Orientations, AMS Special Session on Experimental and Computer Assisted Mathematics, Joint Mathematics Meetings (Denver 2020).
- Lara Pudwell, Connor Scholten, Tyler Schrock and Alexa Serrato, Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), chapter 5.2.
- Aaron Robertson, Permutations containing and avoiding 123 and 132 patterns, Discrete Math. and Theoret. Computer Sci., 3 (1999), 151-154.
- Aaron Robertson, Herbert S. Wilf and Doron Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 16.
- Jeffrey Shallit, Letter to N. J. A. Sloane Mar 14, 1979, concerning A001787, A005209, A005210, A005211.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Hypercube.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximum Clique.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Haskell
a001787 n = n * 2 ^ (n - 1) a001787_list = zipWith (*) [0..] $ 0 : a000079_list -- Reinhard Zumkeller, Jul 11 2014
-
Magma
[n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
-
Maple
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006 A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Mathematica
Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *) f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *) Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *) Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *) Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
PARI
{a(n) = if( n<0, 0, n * 2^(n-1))}
-
PARI
concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
-
Python
def A001787(n): return n*(1<
Chai Wah Wu, Nov 14 2022
Formula
a(n) = Sum_{k=1..n} k*binomial(n, k). - Benoit Cloitre, Dec 06 2002
E.g.f.: x*exp(2x). - Paul Barry, Apr 10 2003
G.f.: x/(1-2*x)^2.
G.f.: x / (1 - 4*x / (1 + x / (1 - x))). - Michael Somos, Apr 07 2012
A108666(n) = Sum_{k=0..n} binomial(n, k)^2 * a(n). - Michael Somos, Apr 07 2012
PSumSIGN transform of A053220. PSumSIGN transform is A045883. Binomial transform is A027471(n+1). - Michael Somos, Jul 10 2003
Starting at a(1)=1, INVERT transform is A002450, INVERT transform of A049072, MOBIUS transform of A083413, PSUM transform is A000337, BINOMIAL transform is A081038, BINOMIAL transform of A005408. - Michael Somos, Apr 07 2012
a(n) = 2*a(n-1)+2^(n-1).
a(2*n) = n*4^n, a(2*n+1) = (2*n+1)4^n.
G.f.: x/det(I-x*M) where M=[1,i;i,1], i=sqrt(-1). - Paul Barry, Apr 27 2005
Starting 1, 1, 4, 12, ... this is 0^n + n2^(n-1), the binomial transform of the 'pair-reversed' natural numbers A004442. - Paul Barry, Jul 24 2003
Convolution of [1, 2, 4, 8, ...] with itself. - Jon Perry, Aug 07 2003
The signed version of this sequence, n(-2)^(n-1), is the inverse binomial transform of n(-1)^(n-1) (alternating sign natural numbers). - Paul Barry, Aug 20 2003
a(n-1) = (Sum_{k=0..n} 2^(n-k-1)*C(n-k, k)*C(1,(k+1)/2)*(1-(-1)^k)/2) - 0^n/4. - Paul Barry, Oct 15 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)(n-2k)^2. - Paul Barry, May 13 2005
a(n) = n! * Sum_{k=0..n} 1/((k - 1)!(n - k)!). - Paul Barry, Mar 26 2003
a(n+1) = Sum_{k=0..n} 4^k * A109466(n,k). - Philippe Deléham, Nov 13 2006
Row sums of A130300 starting (1, 4, 12, 32, ...). - Gary W. Adamson, May 20 2007
a(n) = 4*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1. - Philippe Deléham, Nov 16 2008
Sum_{n>0} 1/a(n) = 2*log(2). - Jaume Oliver Lafont, Feb 10 2009
a(n) = n * A011782(n). - Omar E. Pol, Aug 28 2013
a(n-1) = Sum_{t_1+2*t_2+...+n*t_n=n} (t_1+t_2+...+t_n-1)*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n). - Mircea Merca, Dec 06 2013
a(n+1) = Sum_{r=0..n} (2*r+1)*C(n,r). - J. M. Bergot, Apr 07 2014
a(n) = A007283(n)*n/6. - Enxhell Luzhnica, Apr 16 2016
Sum_{n>0} (-1)^(n+1)/a(n) = 2*log(3/2) = 2*A016578. - Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (i+1) * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} phi(i)*binomial(n, i*j). - Ridouane Oudra, Feb 17 2024
Comments