cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 605 results. Next

A062796 Inverse Moebius transform of f(n) = n^n (A000312).

Original entry on oeis.org

1, 5, 28, 261, 3126, 46688, 823544, 16777477, 387420517, 10000003130, 285311670612, 8916100495200, 302875106592254, 11112006826381564, 437893890380862528, 18446744073726329093, 827240261886336764178, 39346408075296925042601, 1978419655660313589123980
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			n=6: divisors = {1,2,3,6}; 1^1 + 2^2 + 3^3 + 6^6 = 1 + 4 + 27 + 46656 = 46688 = a(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# &]; Array[a, 19] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    vector(17, n, sumdiv(n, d, d^d))
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^m*x^m/(1-x^m +x*O(x^n))),n)} \\ Paul D. Hanna, Oct 27 2009
    
  • PARI
    a(n) = sumdiv(n,d, d^d ); \\ Joerg Arndt, Apr 14 2013
    
  • Python
    from sympy import divisors
    def A062796(n): return sum(d**d for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

a(n) = Sum_{d|n} d^d.
G.f.: Sum_{n>=1} n^n * x^n/(1 - x^n). - Paul D. Hanna, Oct 27 2009
Logarithmic derivative of A023879. - Paul D. Hanna, Sep 05 2012

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021

A062727 Sum of the divisors of n^n (A000312).

Original entry on oeis.org

1, 1, 7, 40, 511, 3906, 138811, 960800, 33554431, 581130733, 24987792457, 313842837672, 26748283770391, 328114698808274, 25927224666044919, 821051025385244160, 36893488147419103231, 878942778254232811938
Offset: 0

Views

Author

Jason Earls, Jul 11 2001

Keywords

Crossrefs

Cf. A000312.

Programs

  • Mathematica
    Table[DivisorSigma[1,n^n],{n,1,5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
  • PARI
    for(n=0,22,print(sigma(n^n)))
    
  • PARI
    { for (n=0, 100, write("b062727.txt", n, " ", sigma(n^n)) ) } \\ Harry J. Smith, Aug 09 2009

Formula

a(n) = A000203(A000312(n)). - Michel Marcus, Jan 10 2015

A100262 Expansion of A(x)^2, where A(x) = o.g.f. of n^n (A000312).

Original entry on oeis.org

1, 2, 9, 62, 582, 6978, 102339, 1779222, 35809052, 819103178, 20987183525, 595341928814, 18519658804818, 626784970780690, 22926284614808071, 901188628763393606, 37882728189752349304, 1695744102631158083866
Offset: 0

Views

Author

Ralf Stephan, Nov 20 2004

Keywords

Examples

			(1 + x + 4x^2 + 27x^3 + 256x^4 +...)^2 = 1 + 2x + 9x^2 + 62x^3 +...
		

Crossrefs

Programs

  • Mathematica
    nn=17;f[x_]=1+Sum[n^n x^n,{n,1,nn}];CoefficientList[Series[f[x]^2,{x,0,nn}],x] (* Geoffrey Critzer, Nov 05 2013 *)
  • PARI
    a(n) = sum(k=0, n, k^k*(n-k)^(n-k)); \\ Seiichi Manyama, Dec 03 2021

Formula

a(n) = Sum_{k=0..n} k^k * (n-k)^(n-k). - Tilman Neumann, Dec 13 2008
a(n) ~ 2 * n^n. - Vaclav Kotesovec, Dec 03 2021

A156223 Numbers that are products of distinct terms in A000312.

Original entry on oeis.org

1, 4, 27, 108, 256, 1024, 3125, 6912, 12500, 27648, 46656, 84375, 186624, 337500, 800000, 823543, 1259712, 3200000, 3294172, 5038848, 11943936, 16777216, 21600000, 22235661, 47775744, 67108864, 86400000, 88942644, 145800000, 210827008, 322486272, 387420489, 452984832
Offset: 1

Views

Author

Gabriel C. Benamy, Feb 06 2009

Keywords

Examples

			a(1) = 1 = 1^1.
a(2) = 4 = 2^2.
a(3) = 108 = 2^2 * 3^3.
...
a(20) = 5038848 = 2^2 * 3^3 * 6^6.
		

Crossrefs

Cf. A000312.

Programs

  • Mathematica
    seq[max_] := Module[{kmax = 1, s = {1}}, While[kmax^kmax < max, kmax++]; Do[s = Select[Union[s, k^k*s], # <= max &], {k, 1, kmax}]; s]; seq[10^8] (* Amiram Eldar, Nov 24 2020 *)

Extensions

More terms from Amiram Eldar, Nov 24 2020

A326985 G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000312.

Original entry on oeis.org

1, 1, 6, 32, 287, 3222, 47606, 831488, 16890792, 389286222, 10037183606, 286154919078, 8937624574652, 303483905672078, 11130904101218094, 438532313635906858, 18470060947222927499, 828155619735377936654, 39384843256547964375436, 1980138439071577626157382
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 10 2019

Keywords

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; n^n end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,
          B(n), add(b(j, 1)*i^j*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+Sum[k^k*j^k*x^(j*k), {k, 1, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ n^n.

A053729 Self-convolution of 1,4,27,256,3125,46656,... (cf. A000312).

Original entry on oeis.org

1, 8, 70, 728, 9027, 132136, 2254620, 44262200, 987183525, 24718587592, 687457908306, 21034757596184, 702270963692039, 25400848001674856, 989240042333246072, 41263578858484555512, 1835070614332428285513
Offset: 1

Views

Author

Leroy Quet, Feb 11 2000

Keywords

Examples

			a(4) = 1^1 *4^4 +2^2 *3^3 +3^3 *2^2 +4^4 *1^1 = 1*256 +4*27 +27*4 +256*1 = 728.
		

Crossrefs

Programs

  • Mathematica
    nn=20;f[x_]=Sum[n^n x^n,{n,1,nn}];CoefficientList[Series[f[x]^2/x^2,{x,0,nn}],x] (* Geoffrey Critzer, Nov 05 2013 *)
    Table[Sum[k^k*(n+1-k)^(n+1-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
  • Python
    def A053729(n): return sum((k**k)*(n+1-k)**(n+1-k) for k in range(1,n+1)) # John Tyler Rascoe, Aug 23 2024

Formula

a(n) = Sum_{k=1..n} k^k * (n+1-k)^(n+1-k).
a(n) ~ 2 * n^n. - Vaclav Kotesovec, Mar 10 2018

Extensions

More terms from James Sellers, Feb 22 2000

A089901 Main diagonal of A089900, also the inverse hyperbinomial of A000312 (offset 1).

Original entry on oeis.org

1, 3, 18, 159, 1848, 26595, 456048, 9073911, 205437312, 5214027267, 146602156800, 4522866752943, 151895344131072, 5516066815430691, 215373243256915968, 8996883483108522375, 400372897193449586688, 18908951043963993686019
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2003

Keywords

Comments

The n-th row of array A089900 is the n-th binomial transform of the factorials found in row 0: {1!,2!,3!,...,(n+1)!,...}. The hyperbinomial transform of this main diagonal gives: {1,4,27,...,(n+1)^(n+1),...}, which is the next lower diagonal in array A089900.
a(n), for n>=1, is the number of colored labeled mappings from n points to themselves, where each component is one of three colors. - Steven Finch, Nov 28 2021

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x])^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
    Flatten[{1,Table[Sum[n^(n-k)*Binomial[n,k]*(k+1)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 09 2013 *)
    a[n_] := (n^(n + 2) + Exp[n] Gamma[n + 2, n]) / (n + 1);
    Table[a[n], {n, 0, 17}]  (* Peter Luschny, Nov 29 2021 *)
  • PARI
    /* As (n+1)-th term of the n-th binomial transform of {(n+1)!}: */
    {a(n)=if(n<0,0,sum(i=0,n,n^(n-i)*binomial(n,i)*(i+1)!))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* As (n+1)-th term of inverse hyperbinomial of {(n+1)^(n+1)}: */
    {a(n)=if(n<0,0,sum(i=0,n,-(n-i-1)^(n-i-1)*binomial(n,i)*(i+1)^(i+1)))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} n^(n-k) * C(n,k) * (k+1)!.
a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1) * C(n,k) * (k+1)^(k+1).
E.g.f.: 1 / (1 + LambertW(-x))^3.
E.g.f.: (Sum_{n>=0} (n+1)^(n+1) * x^n/n!) * (Sum_{n>=0} -(n-1)^(n-1) * x^n/n!).
a(n) ~ n^(n+1) * (1 + sqrt(Pi/(2*n))). - Vaclav Kotesovec, Jul 09 2013
a(n) = (n^(n + 2) + exp(n)*Gamma(n + 2, n)) / (n + 1). - Peter Luschny, Nov 29 2021

A309652 a(n) = [x^n] B(x)^n, where B(x) is g.f. of A000312.

Original entry on oeis.org

1, 1, 9, 106, 1493, 24276, 448122, 9301251, 215547845, 5541171496, 156997349684, 4870353700532, 164366482285898, 5998207807965543, 235388194276592723, 9884482616014596546, 442206843338189113445, 20995082225203329126384, 1054247070579064423466016
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 11 2019

Keywords

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; n^n end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, B(n),
          (h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    Table[SeriesCoefficient[(1+Sum[k^k*x^k, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(exp(-1)) * n^(n+1).

A326986 G.f.: B(x)*B(x^2)*B(x^3)*..., where B(x) is g.f. of A000312.

Original entry on oeis.org

1, 1, 5, 29, 266, 3163, 46994, 827107, 16828741, 388308078, 10017853262, 285720195351, 8926575094978, 303172417424680, 11121259586618456, 438207141286916539, 18458204444260001120, 827690809585441201775, 39365349178064541861252, 1979267564496263599093676
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 10 2019

Keywords

Crossrefs

Programs

  • Maple
    B:= proc(n) option remember; n^n end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,
          B(n), add(b(j, 1)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+Sum[k^k*x^(j*k), {k, 1, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ n^n.
Showing 1-10 of 605 results. Next