A283335
Expansion of exp( Sum_{n>=1} -A062796(n)/n*x^n ) in powers of x.
Original entry on oeis.org
1, -1, -2, -7, -54, -544, -7005, -108220, -1958263, -40629205, -951376217, -24826365255, -714568797261, -22491957589783, -768651303338761, -28344950796904518, -1121910285249842486, -47442295013058570884, -2134673855370621621400
Offset: 0
-
A[n_] := Sum[d^d, {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Mar 11 2017 *)
-
a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^d)*a(n - k)));
for(n=0, 18, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
A342628
a(n) = Sum_{d|n} d^(n-d).
Original entry on oeis.org
1, 2, 2, 6, 2, 45, 2, 322, 731, 3383, 2, 132901, 2, 827641, 10297068, 33570818, 2, 2578617270, 2, 44812807567, 678610493340, 285312719189, 2, 393061010002613, 95367431640627, 302875123369471, 150094917726535604, 569939345952661545, 2, 105474306078445349841, 2
Offset: 1
-
a[n_] := DivisorSum[n, #^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
-
a(n) = sumdiv(n, d, d^(n-d));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)))
-
from sympy import divisors
def A342628(n): return sum(d**(n-d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022
A262843
Inverse Moebius transform of n^(n-1).
Original entry on oeis.org
1, 3, 10, 67, 626, 7788, 117650, 2097219, 43046731, 1000000628, 25937424602, 743008378540, 23298085122482, 793714773371796, 29192926025391260, 1152921504608944195, 48661191875666868482, 2185911559738739586477, 104127350297911241532842, 5242880000000001000000692, 278218429446951548637314060
Offset: 1
O.g.f.: A(x) = x + 3*x^2 + 10*x^3 + 67*x^4 + 626*x^5 + 7788*x^6 +...
where
A(x) = x/(1-x) + 2*x^2/(1-x^2) + 3^2*x^3/(1-x^3) + 4^3*x^4/(1-x^4) + 5^4*x^5/(1-x^5) + 6^5*x^6/(1-x^6) +...+ n^(n-1)* x^n/(1 -x^n) +...
Logarithmic generating function.
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 +...
where
exp(L(x)) = 1/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^16 * (1-x^5)^125 * (1-x^6)^1296 *...* (1-x^n)^(n^(n-2)) *...).
Explicitly,
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 + 18452*x^7 + 282426*x^8 +...+ A262842(n)*x^n ...
-
a[n_] := DivisorSum[n, #^(#-1) &]; Array[a, 30] (* Jean-François Alcover, Dec 23 2015 *)
-
{a(n)=sumdiv(n,d, d^(d-1))}
for(n=1,30,print1(a(n),", "))
-
{a(n)=polcoeff(sum(m=1, n, m^(m-1)*x^m/(1-x^m +x*O(x^n))), n)}
for(n=1,30,print1(a(n),", "))
-
from sympy import divisors
def A262843(n): return sum(d**(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022
A066108
Sum n^d over all divisors of n.
Original entry on oeis.org
1, 6, 30, 276, 3130, 46914, 823550, 16781384, 387421227, 10000100110, 285311670622, 8916103456860, 302875106592266, 11112006930971730, 437893890381622140, 18446744078004584720, 827240261886336764194, 39346408075494930884190, 1978419655660313589123998
Offset: 1
n = 12: a(12) = A066106(12) = 8916103456860 = 8916100448256+2985984+20736+1728+144+12.
For comparison: M-transform of n^n at 12 = 8916100401348 = 8916100448256-46656-256+0+4+0 = A062793(12);
Inverse M-transform of n^n at 12 = 8916100495200 = 8916100448256+46656+256+27+4+1 = A062796(12).
-
A066108 := n -> add(n^d, d = NumberTheory[Divisors](n)); seq(A066108(n), n = 1 .. 19) - Miles Wilson, Jan 12 2025
-
Table[Sum[n^d, {d, Divisors@ n}], {n, 19}] (* Michael De Vlieger, Dec 20 2015 *)
-
a(n)=sumdiv(n,d, n^d ); /* Joerg Arndt, Oct 07 2012 */
A283498
a(n) = Sum_{d|n} d^(d+1).
Original entry on oeis.org
1, 9, 82, 1033, 15626, 280026, 5764802, 134218761, 3486784483, 100000015634, 3138428376722, 106993205660122, 3937376385699290, 155568095563577034, 6568408355712906332, 295147905179487044617, 14063084452067724991010, 708235345355341163422059, 37589973457545958193355602
Offset: 1
a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.
-
f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* Robert G. Wilson v, Mar 10 2017 *)
-
a(n) = sumdiv(n, d, d^(d+1)); \\ Michel Marcus, Mar 09 2017
-
from sympy import divisors
def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022
A294956
a(n) = Sum_{d|n} d^(d + n/d).
Original entry on oeis.org
1, 9, 82, 1041, 15626, 280212, 5764802, 134221889, 3486785131, 100000078254, 3138428376722, 106993207077516, 3937376385699290, 155568095598166344, 6568408355713287812, 295147905180426634241, 14063084452067724991010
Offset: 1
-
sd[n_]:=Total[#^(#+n/#)&/@Divisors[n]]; Array[sd,20] (* Harvey P. Dale, Mar 28 2021 *)
-
a(n) = sumdiv(n, d, d^(d+n/d));
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(k^(k-1)))))) \\ Seiichi Manyama, Jun 09 2019
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k*x^k))) \\ Seiichi Manyama, Jan 11 2023
A023879
Number of partitions in expanding space.
Original entry on oeis.org
1, 1, 3, 12, 79, 722, 8675, 128177, 2248873, 45644104, 1051632553, 27107038863, 772751427746, 24136897360750, 819689757351091, 30068876227952332, 1184869328943005936, 49914047187427191742
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
seq(coeff(series(mul((1-x^k)^(-k^(k-1)),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
-
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
-
{a(n)=polcoeff(prod(k=1,n,(1-x^k+x*O(x^n))^(-k^(k-1))),n)}
-
{a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)),n)} \\ Paul D. Hanna, Sep 05 2012
A174472
a(n) = Sum_{d|n} d^sigma(d).
Original entry on oeis.org
1, 9, 82, 16393, 15626, 2176782426, 5764802, 35184372105225, 2541865828411, 1000000000000015634, 3138428376722, 1648446623609512543953220489306, 3937376385699290, 3214199700417740936756852426, 16834112196028232574462906332, 21267647932558653966460948148857618441
Offset: 1
-
a[n_] := DivisorSum[n, #^DivisorSigma[1, #] &]; Array[a, 16] (* Amiram Eldar, Oct 08 2021 *)
-
{a(n)=sumdiv(n,d,d^sigma(d))}
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^sigma(k)*x^k/(1-x^k))) \\ Seiichi Manyama, Oct 14 2021
A308594
a(n) = Sum_{d|n} d^(d+n).
Original entry on oeis.org
1, 17, 730, 65601, 9765626, 2176802276, 678223072850, 281474993488897, 150094635297530563, 100000000030517582222, 81402749386839761113322, 79496847203492408399442540, 91733330193268616658399616010, 123476695691248494372093865205800
Offset: 1
-
sp[n_]:=Module[{d=Divisors[n]},Table[d[[k]]^(d[[k]]+n),{k,Length[ d]}]] // Total; Array[sp,15] (* Harvey P. Dale, Jan 02 2020 *)
a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *)
-
a(n) = sumdiv(n, d, d^(d+n));
-
my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1))))))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021
-
from sympy import divisors
def A308594(n): return sum(d**(d+n) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022
A308698
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d).
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 261, 2, 1, 257, 19684, 65553, 3126, 4, 1, 1025, 531442, 16777281, 9765626, 46688, 2, 1, 4097, 14348908, 4294967553, 30517578126, 2176783082, 823544, 4, 1, 16385, 387420490, 1099511628801, 95367431640626, 101559956688164, 678223072850, 16777477, 3
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
2, 5, 17, 65, 257, ...
2, 28, 730, 19684, 531442, ...
3, 261, 65553, 16777281, 4294967553, ...
2, 3126, 9765626, 30517578126, 95367431640626, ...
-
T[n_, k_] := DivisorSum[n, #^(k*#) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
Showing 1-10 of 31 results.
Comments