cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A283335 Expansion of exp( Sum_{n>=1} -A062796(n)/n*x^n ) in powers of x.

Original entry on oeis.org

1, -1, -2, -7, -54, -544, -7005, -108220, -1958263, -40629205, -951376217, -24826365255, -714568797261, -22491957589783, -768651303338761, -28344950796904518, -1121910285249842486, -47442295013058570884, -2134673855370621621400
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2017

Keywords

Crossrefs

Cf. A023879 (exp( Sum_{n>=1} A062796(n)/n*x^n )), A062796.

Programs

  • Mathematica
    A[n_] :=  Sum[d^d, {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^d)*a(n - k)));
    for(n=0, 18, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k^(k-1)).
a(n) = -(1/n)*Sum_{k=1..n} A062796(k)*a(n-k) for n > 0.

A342628 a(n) = Sum_{d|n} d^(n-d).

Original entry on oeis.org

1, 2, 2, 6, 2, 45, 2, 322, 731, 3383, 2, 132901, 2, 827641, 10297068, 33570818, 2, 2578617270, 2, 44812807567, 678610493340, 285312719189, 2, 393061010002613, 95367431640627, 302875123369471, 150094917726535604, 569939345952661545, 2, 105474306078445349841, 2
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)))
    
  • Python
    from sympy import divisors
    def A342628(n): return sum(d**(n-d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

G.f.: Sum_{k>=1} x^k/(1 - (k * x)^k).
If p is prime, a(p) = 2.

A262843 Inverse Moebius transform of n^(n-1).

Original entry on oeis.org

1, 3, 10, 67, 626, 7788, 117650, 2097219, 43046731, 1000000628, 25937424602, 743008378540, 23298085122482, 793714773371796, 29192926025391260, 1152921504608944195, 48661191875666868482, 2185911559738739586477, 104127350297911241532842, 5242880000000001000000692, 278218429446951548637314060
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2015

Keywords

Comments

Logarithmic derivative of A262842.

Examples

			O.g.f.: A(x) = x + 3*x^2 + 10*x^3 + 67*x^4 + 626*x^5 + 7788*x^6 +...
where
A(x) = x/(1-x) + 2*x^2/(1-x^2) + 3^2*x^3/(1-x^3) + 4^3*x^4/(1-x^4) + 5^4*x^5/(1-x^5) + 6^5*x^6/(1-x^6) +...+ n^(n-1)* x^n/(1 -x^n) +...
Logarithmic generating function.
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 +...
where
exp(L(x)) = 1/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^16 * (1-x^5)^125 * (1-x^6)^1296 *...* (1-x^n)^(n^(n-2)) *...).
Explicitly,
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 + 18452*x^7 + 282426*x^8 +...+ A262842(n)*x^n ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#-1) &]; Array[a, 30] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    {a(n)=sumdiv(n,d, d^(d-1))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n, m^(m-1)*x^m/(1-x^m +x*O(x^n))), n)}
    for(n=1,30,print1(a(n),", "))
    
  • Python
    from sympy import divisors
    def A262843(n): return sum(d**(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

a(n) = Sum{d|n} d^(d-1).
G.f.: Sum_{n>=1} n^(n-1) * x^n/(1 - x^n).

A066108 Sum n^d over all divisors of n.

Original entry on oeis.org

1, 6, 30, 276, 3130, 46914, 823550, 16781384, 387421227, 10000100110, 285311670622, 8916103456860, 302875106592266, 11112006930971730, 437893890381622140, 18446744078004584720, 827240261886336764194, 39346408075494930884190, 1978419655660313589123998
Offset: 1

Views

Author

Labos Elemer, Dec 05 2001

Keywords

Comments

This is neither the Moebius transform nor the inverse Moebius transform of n^n, although it is close to them.

Examples

			n = 12: a(12) = A066106(12) = 8916103456860 = 8916100448256+2985984+20736+1728+144+12.
For comparison: M-transform of n^n at 12 = 8916100401348 = 8916100448256-46656-256+0+4+0 = A062793(12);
Inverse M-transform of n^n at 12 = 8916100495200 = 8916100448256+46656+256+27+4+1 = A062796(12).
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} n^d.
a(n) ~ n^n. - Vaclav Kotesovec, Jun 05 2021
Conjectured g.f.: Sum_{m>=1} (m^m*Sum_{k=1..m}(x^(k*m)*Sum_{j=0..k}((-1)^j*(k - j)^m*binomial(m + 1, j)))/(1 - x^m)^(m + 1)), where the inner summation is the Triangle of Eulerian numbers A008292. - Miles Wilson, Jan 12 2025

A283498 a(n) = Sum_{d|n} d^(d+1).

Original entry on oeis.org

1, 9, 82, 1033, 15626, 280026, 5764802, 134218761, 3486784483, 100000015634, 3138428376722, 106993205660122, 3937376385699290, 155568095563577034, 6568408355712906332, 295147905179487044617, 14063084452067724991010, 708235345355341163422059, 37589973457545958193355602
Offset: 1

Views

Author

Seiichi Manyama, Mar 09 2017

Keywords

Examples

			a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.
		

Crossrefs

Cf. A007778, A062796 (Sum_{d|n} d^d).

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+1)); \\ Michel Marcus, Mar 09 2017
    
  • Python
    from sympy import divisors
    def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

From Ilya Gutkovskiy, May 06 2017: (Start)
G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n. (End)

Extensions

More terms from Michel Marcus, Mar 09 2017

A294956 a(n) = Sum_{d|n} d^(d + n/d).

Original entry on oeis.org

1, 9, 82, 1041, 15626, 280212, 5764802, 134221889, 3486785131, 100000078254, 3138428376722, 106993207077516, 3937376385699290, 155568095598166344, 6568408355713287812, 295147905180426634241, 14063084452067724991010
Offset: 1

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:=Total[#^(#+n/#)&/@Divisors[n]]; Array[sd,20] (* Harvey P. Dale, Mar 28 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(k^(k-1)))))) \\ Seiichi Manyama, Jun 09 2019
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k*x^k))) \\ Seiichi Manyama, Jan 11 2023

Formula

L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 09 2019
G.f.: Sum_{k>0} k^(k+1) * x^k / (1 - k * x^k). - Seiichi Manyama, Jan 11 2023

A023879 Number of partitions in expanding space.

Original entry on oeis.org

1, 1, 3, 12, 79, 722, 8675, 128177, 2248873, 45644104, 1051632553, 27107038863, 772751427746, 24136897360750, 819689757351091, 30068876227952332, 1184869328943005936, 49914047187427191742
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062796.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    seq(coeff(series(mul((1-x^k)^(-k^(k-1)),k=1..n),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^(k-1)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,(1-x^k+x*O(x^n))^(-k^(k-1))),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)),n)} \\ Paul D. Hanna, Sep 05 2012
    

Formula

G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-1)).
G.f.: exp( Sum_{n>=1} A062796(n)/n*x^n ), where A062796(n) = Sum_{d|n} d^d. - Paul D. Hanna, Sep 05 2012
a(n) ~ n^(n-1). - Vaclav Kotesovec, Mar 14 2015

A174472 a(n) = Sum_{d|n} d^sigma(d).

Original entry on oeis.org

1, 9, 82, 16393, 15626, 2176782426, 5764802, 35184372105225, 2541865828411, 1000000000000015634, 3138428376722, 1648446623609512543953220489306, 3937376385699290, 3214199700417740936756852426, 16834112196028232574462906332, 21267647932558653966460948148857618441
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^DivisorSigma[1, #] &]; Array[a, 16] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    {a(n)=sumdiv(n,d,d^sigma(d))}
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^sigma(k)*x^k/(1-x^k))) \\ Seiichi Manyama, Oct 14 2021

Formula

Logarithmic derivative of A174471.
G.f.: Sum_{k>=1} k^sigma(k) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021

A308594 a(n) = Sum_{d|n} d^(d+n).

Original entry on oeis.org

1, 17, 730, 65601, 9765626, 2176802276, 678223072850, 281474993488897, 150094635297530563, 100000000030517582222, 81402749386839761113322, 79496847203492408399442540, 91733330193268616658399616010, 123476695691248494372093865205800
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    sp[n_]:=Module[{d=Divisors[n]},Table[d[[k]]^(d[[k]]+n),{k,Length[ d]}]] // Total; Array[sp,15] (* Harvey P. Dale, Jan 02 2020 *)
    a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1))))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021
    
  • Python
    from sympy import divisors
    def A308594(n): return sum(d**(d+n) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} (k^2 * x)^k/(1 - (k * x)^k). - Seiichi Manyama, Mar 16 2021

A308698 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 261, 2, 1, 257, 19684, 65553, 3126, 4, 1, 1025, 531442, 16777281, 9765626, 46688, 2, 1, 4097, 14348908, 4294967553, 30517578126, 2176783082, 823544, 4, 1, 16385, 387420490, 1099511628801, 95367431640626, 101559956688164, 678223072850, 16777477, 3
Offset: 1

Views

Author

Seiichi Manyama, Jun 17 2019

Keywords

Examples

			Square array begins:
   1,    1,       1,           1,              1, ...
   2,    5,      17,          65,            257, ...
   2,   28,     730,       19684,         531442, ...
   3,  261,   65553,    16777281,     4294967553, ...
   2, 3126, 9765626, 30517578126, 95367431640626, ...
		

Crossrefs

Columns k=0..3 give A000005, A062796, A308696, A308697.
Row n=1..2 give A000012, A052539.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*#) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j-1))).
G.f. of column k: Sum_{j>=1} j^(k*j) * x^j/(1 - x^j).
Showing 1-10 of 31 results. Next