cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A283499 Expansion of exp( Sum_{n>=1} -A283498(n)/n*x^n ) in powers of x.

Original entry on oeis.org

1, -1, -4, -23, -223, -2767, -42268, -759008, -15672223, -365639304, -9512549191, -273072804420, -8575012101043, -292422232720311, -10762617713743350, -425245537127322111, -17953822507629389009, -806668679245000383731
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    A[n_] :=  Sum[d^(d+ 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 17}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^(d + 1))*a(n - k)));
    for(n=0, 20, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k^k).
a(n) = -(1/n)*Sum_{k=1..n} A283498(k)*a(n-k) for n > 0.

A023880 Number of partitions in expanding space.

Original entry on oeis.org

1, 1, 5, 32, 298, 3531, 51609, 894834, 17980052, 410817517, 10518031721, 298207687029, 9273094072138, 313757506696967, 11474218056441581, 450961669608632160, 18954582520550896213, 848384721904740036422, 40285256621556957160307, 2022695276960566890383148
Offset: 0

Views

Author

Keywords

Comments

Also partitions of n into 1 sort of 1, 4 sorts of 2, 27 sorts of 3, ..., k^k sorts of k. - Joerg Arndt, Feb 04 2015

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 04 2015
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ G. C. Greubel, Oct 31 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n^n)
    print([b(n) for n in range(20)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: 1 / Product_{k>=1} (1 - x^k)^(k^k).
a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 5*exp(-2))/n^2). - Vaclav Kotesovec, Mar 14 2015
a(n) = (1/n)*Sum_{k=1..n} A283498(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 11 2017

A283533 a(n) = Sum_{d|n} d^(2*d + 1).

Original entry on oeis.org

1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Comments

Inverse Mobius transform of A085526. - R. J. Mathar, Mar 11 2017

Examples

			a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), this sequence (k=2), A283535 (k=3).
Cf. A308696.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019

A283535 a(n) = Sum_{d|n} d^(3*d + 1).

Original entry on oeis.org

1, 129, 59050, 67108993, 152587890626, 609359740069674, 3909821048582988050, 37778931862957228818561, 523347633027360537213570571, 10000000000000000000152587890754, 255476698618765889551019445759400442, 8505622499821102144576132293474637113130
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Examples

			a(6) = 1^(3+1) + 2^(6+1) + 3^(9+1) + 6^(18+1) = 609359740069674.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), A283533 (k=2), this sequence (k=3).
Cf. A308697.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(3 d + 1)]]; Array[f, 12] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(3*d+1)); \\ Michel Marcus, Mar 11 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k))))) \\ Seiichi Manyama, Jun 18 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019

A283369 a(n) = Sum_{d|n} d^(4*d + 1).

Original entry on oeis.org

1, 513, 1594324, 17179869697, 476837158203126, 28430288029931296212, 3219905755813179726837608, 633825300114114700765531472385, 202755595904452569706561330874548093, 100000000000000000000000000476837158203638
Offset: 1

Views

Author

Seiichi Manyama, Mar 17 2017

Keywords

Examples

			a(6) = 1^(4+1) + 2^(8+1) + 3^(12+1) + 6^(24+1) = 28430288029931296212.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), A283533 (k=2), A283535 (k=3), this sequence (k=4).

Programs

  • Mathematica
    Table[Sum[d^(4*d + 1), {d, Divisors[n]}], {n, 20}] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    for(n=1, 20, print1(sumdiv(n, d, d^(4*d + 1)),", ")) \\ Indranil Ghosh, Mar 17 2017

A308704 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d+1).

Original entry on oeis.org

1, 1, 3, 1, 9, 4, 1, 33, 82, 7, 1, 129, 2188, 1033, 6, 1, 513, 59050, 262177, 15626, 12, 1, 2049, 1594324, 67108993, 48828126, 280026, 8, 1, 8193, 43046722, 17179869697, 152587890626, 13060696236, 5764802, 15, 1, 32769, 1162261468, 4398046513153, 476837158203126, 609359740069674, 4747561509944, 134218761, 13
Offset: 1

Views

Author

Seiichi Manyama, Jun 18 2019

Keywords

Examples

			Square array begins:
   1,     1,        1,            1,               1, ...
   3,     9,       33,          129,             513, ...
   4,    82,     2188,        59050,         1594324, ...
   7,  1033,   262177,     67108993,     17179869697, ...
   6, 15626, 48828126, 152587890626, 476837158203126, ...
		

Crossrefs

Columns k=0..3 give A000203, A283498, A283533, A283535.
Row n=1..2 give A000012, A087289.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*# + 1) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j))).
G.f. of column k: Sum_{j>=1} j^(k*j+1) * x^j/(1 - x^j).

A308755 a(n) = Sum_{d|n} d^(d-2).

Original entry on oeis.org

1, 2, 4, 18, 126, 1301, 16808, 262162, 4782973, 100000127, 2357947692, 61917365541, 1792160394038, 56693912392105, 1946195068359504, 72057594038190098, 2862423051509815794, 121439531096599036046, 5480386857784802185940, 262144000000000100000143
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d-2))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(k-3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k-3))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - x^k).

A304870 L.g.f.: log(Product_{k>=1} (1 + x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 7, 82, 1015, 15626, 279862, 5764802, 134216695, 3486784483, 99999984382, 3138428376722, 106993205100070, 3937376385699290, 155568095552047430, 6568408355712906332, 295147905179218607095, 14063084452067724991010, 708235345355334189853093, 37589973457545958193355602
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 82*x^3/3 + 1015*x^4/4 + 15626*x^5/5 + 279862*x^6/6 + 5764802*x^7/7 + 134216695*x^8/8 + 3486784483*x^9/9 + ...
exp(L(x)) = 1 + x + 4*x^2 + 31*x^3 + 289*x^4 + 3495*x^5 + 51268*x^6 + 891152*x^7 + 17926913*x^8 + 409907600*x^9 + ... + A261053(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 19; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^k^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 19; Rest[CoefficientList[Series[Sum[k^(k + 1) x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Sum[(-1)^(n/d + 1) d^(d + 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 19}]

Formula

G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 + x^k).
a(n) = Sum_{d|n} (-1)^(n/d+1)*d^(d+1).
a(p) = p^(p+1) + 1 where p is an odd prime.
Showing 1-8 of 8 results.