A283499
Expansion of exp( Sum_{n>=1} -A283498(n)/n*x^n ) in powers of x.
Original entry on oeis.org
1, -1, -4, -23, -223, -2767, -42268, -759008, -15672223, -365639304, -9512549191, -273072804420, -8575012101043, -292422232720311, -10762617713743350, -425245537127322111, -17953822507629389009, -806668679245000383731
Offset: 0
-
A[n_] := Sum[d^(d+ 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 17}] (* Indranil Ghosh, Mar 11 2017 *)
-
a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^(d + 1))*a(n - k)));
for(n=0, 20, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
A023880
Number of partitions in expanding space.
Original entry on oeis.org
1, 1, 5, 32, 298, 3531, 51609, 894834, 17980052, 410817517, 10518031721, 298207687029, 9273094072138, 313757506696967, 11474218056441581, 450961669608632160, 18954582520550896213, 848384721904740036422, 40285256621556957160307, 2022695276960566890383148
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(
add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 04 2015
-
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 14 2015 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ G. C. Greubel, Oct 31 2018
-
# uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n^n)
print([b(n) for n in range(20)]) # Peter Luschny, Nov 11 2020
A283533
a(n) = Sum_{d|n} d^(2*d + 1).
Original entry on oeis.org
1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1
a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
Cf. Sum_{d|n} d^(k*d+1):
A283498 (k=1), this sequence (k=2),
A283535 (k=3).
-
f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
-
a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019
A283535
a(n) = Sum_{d|n} d^(3*d + 1).
Original entry on oeis.org
1, 129, 59050, 67108993, 152587890626, 609359740069674, 3909821048582988050, 37778931862957228818561, 523347633027360537213570571, 10000000000000000000152587890754, 255476698618765889551019445759400442, 8505622499821102144576132293474637113130
Offset: 1
a(6) = 1^(3+1) + 2^(6+1) + 3^(9+1) + 6^(18+1) = 609359740069674.
Cf. Sum_{d|n} d^(k*d+1):
A283498 (k=1),
A283533 (k=2), this sequence (k=3).
-
f[n_] := Block[{d = Divisors[n]}, Total[d^(3 d + 1)]]; Array[f, 12] (* Robert G. Wilson v, Mar 10 2017 *)
-
a(n) = sumdiv(n, d, d^(3*d+1)); \\ Michel Marcus, Mar 11 2017
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k))))) \\ Seiichi Manyama, Jun 18 2019
A283369
a(n) = Sum_{d|n} d^(4*d + 1).
Original entry on oeis.org
1, 513, 1594324, 17179869697, 476837158203126, 28430288029931296212, 3219905755813179726837608, 633825300114114700765531472385, 202755595904452569706561330874548093, 100000000000000000000000000476837158203638
Offset: 1
a(6) = 1^(4+1) + 2^(8+1) + 3^(12+1) + 6^(24+1) = 28430288029931296212.
-
Table[Sum[d^(4*d + 1), {d, Divisors[n]}], {n, 20}] (* Indranil Ghosh, Mar 17 2017 *)
-
for(n=1, 20, print1(sumdiv(n, d, d^(4*d + 1)),", ")) \\ Indranil Ghosh, Mar 17 2017
A308704
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d+1).
Original entry on oeis.org
1, 1, 3, 1, 9, 4, 1, 33, 82, 7, 1, 129, 2188, 1033, 6, 1, 513, 59050, 262177, 15626, 12, 1, 2049, 1594324, 67108993, 48828126, 280026, 8, 1, 8193, 43046722, 17179869697, 152587890626, 13060696236, 5764802, 15, 1, 32769, 1162261468, 4398046513153, 476837158203126, 609359740069674, 4747561509944, 134218761, 13
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
3, 9, 33, 129, 513, ...
4, 82, 2188, 59050, 1594324, ...
7, 1033, 262177, 67108993, 17179869697, ...
6, 15626, 48828126, 152587890626, 476837158203126, ...
-
T[n_, k_] := DivisorSum[n, #^(k*# + 1) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
A308755
a(n) = Sum_{d|n} d^(d-2).
Original entry on oeis.org
1, 2, 4, 18, 126, 1301, 16808, 262162, 4782973, 100000127, 2357947692, 61917365541, 1792160394038, 56693912392105, 1946195068359504, 72057594038190098, 2862423051509815794, 121439531096599036046, 5480386857784802185940, 262144000000000100000143
Offset: 1
-
a[n_] := DivisorSum[n, #^(# - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
-
{a(n) = sumdiv(n, d, d^(d-2))}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(k-3)))))
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-x^k)))
A304870
L.g.f.: log(Product_{k>=1} (1 + x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n.
Original entry on oeis.org
1, 7, 82, 1015, 15626, 279862, 5764802, 134216695, 3486784483, 99999984382, 3138428376722, 106993205100070, 3937376385699290, 155568095552047430, 6568408355712906332, 295147905179218607095, 14063084452067724991010, 708235345355334189853093, 37589973457545958193355602
Offset: 1
L.g.f.: L(x) = x + 7*x^2/2 + 82*x^3/3 + 1015*x^4/4 + 15626*x^5/5 + 279862*x^6/6 + 5764802*x^7/7 + 134216695*x^8/8 + 3486784483*x^9/9 + ...
exp(L(x)) = 1 + x + 4*x^2 + 31*x^3 + 289*x^4 + 3495*x^5 + 51268*x^6 + 891152*x^7 + 17926913*x^8 + 409907600*x^9 + ... + A261053(n)*x^n + ...
-
nmax = 19; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^k^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
nmax = 19; Rest[CoefficientList[Series[Sum[k^(k + 1) x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
a[n_] := Sum[(-1)^(n/d + 1) d^(d + 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 19}]
Showing 1-8 of 8 results.
Comments