cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A283536 Expansion of exp( Sum_{n>=1} -A283535(n)/n*x^n ) in powers of x.

Original entry on oeis.org

1, -1, -64, -19619, -16755517, -30499543213, -101528172949440, -558442022082754554, -4721800698082895269442, -58144976385942395405449505, -999941534906642496357956893139, -23224150593200781968944997552887957, -708778584588517237886357058373629079824
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Crossrefs

Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)): A010815 (m=0), A283499 (m=1), A283534 (m=2), this sequence (m=3).
Cf. A283580 (Product_{k>=1} 1/(1 - x^k)^(k^(3*k))).

Programs

  • Mathematica
    A[n_] :=  Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_]:=If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    A(n) = sumdiv(n, d, d^(3*d + 1));
    a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, A(k)*a(n - k)));
    for(n=0, 12, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k^(3*k)).
a(n) = -(1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0.

A283580 Expansion of exp( Sum_{n>=1} A283535(n)/n*x^n ) in powers of x.

Original entry on oeis.org

1, 1, 65, 19748, 16799044, 30535636881, 101591759812967, 558649739234980142, 4722932373908389412037, 58154498193439779564557624, 1000058469893323150011227885608, 23226158305362748824532880463596385, 708825166389400019044145225134521489486
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2017

Keywords

Crossrefs

Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)): A000041 (m=0), A023880 (m=1), A283579 (m=2), this sequence (m=3).
Cf. A283536 (Product_{k>=1} (1 - x^k)^(k^(3*k))).

Programs

  • Mathematica
    A[n_] :=  Sum[d^(3*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, (1/n)*Sum[A[k]*a[n - k], {k, n}]];Table[a[n], {n, 0, 12}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    A(n) = sumdiv(n, d, d^(3*d + 1));
    a(n) = if(n==0, 1, (1/n)*sum(k=1, n, A(k)*a(n - k)));
    for(n=0, 12, print1(a(n),", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^(3*k)).
a(n) = (1/n)*Sum_{k=1..n} A283535(k)*a(n-k) for n > 0.
a(n) ~ n^(3*n) * (1 + exp(-3)/n^3). - Vaclav Kotesovec, Mar 17 2017

A283533 a(n) = Sum_{d|n} d^(2*d + 1).

Original entry on oeis.org

1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2017

Keywords

Comments

Inverse Mobius transform of A085526. - R. J. Mathar, Mar 11 2017

Examples

			a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), this sequence (k=2), A283535 (k=3).
Cf. A308696.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019

A283369 a(n) = Sum_{d|n} d^(4*d + 1).

Original entry on oeis.org

1, 513, 1594324, 17179869697, 476837158203126, 28430288029931296212, 3219905755813179726837608, 633825300114114700765531472385, 202755595904452569706561330874548093, 100000000000000000000000000476837158203638
Offset: 1

Views

Author

Seiichi Manyama, Mar 17 2017

Keywords

Examples

			a(6) = 1^(4+1) + 2^(8+1) + 3^(12+1) + 6^(24+1) = 28430288029931296212.
		

Crossrefs

Cf. Sum_{d|n} d^(k*d+1): A283498 (k=1), A283533 (k=2), A283535 (k=3), this sequence (k=4).

Programs

  • Mathematica
    Table[Sum[d^(4*d + 1), {d, Divisors[n]}], {n, 20}] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    for(n=1, 20, print1(sumdiv(n, d, d^(4*d + 1)),", ")) \\ Indranil Ghosh, Mar 17 2017

A308704 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d+1).

Original entry on oeis.org

1, 1, 3, 1, 9, 4, 1, 33, 82, 7, 1, 129, 2188, 1033, 6, 1, 513, 59050, 262177, 15626, 12, 1, 2049, 1594324, 67108993, 48828126, 280026, 8, 1, 8193, 43046722, 17179869697, 152587890626, 13060696236, 5764802, 15, 1, 32769, 1162261468, 4398046513153, 476837158203126, 609359740069674, 4747561509944, 134218761, 13
Offset: 1

Views

Author

Seiichi Manyama, Jun 18 2019

Keywords

Examples

			Square array begins:
   1,     1,        1,            1,               1, ...
   3,     9,       33,          129,             513, ...
   4,    82,     2188,        59050,         1594324, ...
   7,  1033,   262177,     67108993,     17179869697, ...
   6, 15626, 48828126, 152587890626, 476837158203126, ...
		

Crossrefs

Columns k=0..3 give A000203, A283498, A283533, A283535.
Row n=1..2 give A000012, A087289.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*# + 1) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j))).
G.f. of column k: Sum_{j>=1} j^(k*j+1) * x^j/(1 - x^j).

A308757 a(n) = Sum_{d|n} d^(3*(d-2)).

Original entry on oeis.org

1, 2, 28, 4098, 1953126, 2176782365, 4747561509944, 18014398509486082, 109418989131512359237, 1000000000000000001953127, 13109994191499930367061460372, 237376313799769806328952468217885, 5756130429098929077956071497934208654
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(3*(# - 2)) &]; Array[a, 13] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(3*(d-2)))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k-7)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(3*(k-2))*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(3*k-7))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(3*(k-2)) * x^k/(1 - x^k).
Showing 1-6 of 6 results.