A283534
Expansion of exp( Sum_{n>=1} -A283533(n)/n*x^n ) in powers of x.
Original entry on oeis.org
1, -1, -16, -713, -64687, -9688545, -2165715003, -675843665621, -280752874575386, -149800127959983890, -99844730502381895830, -81300082280849836639246, -79413710313923588156379547, -91652445699847071535357000689, -123383623610527054787988720527285, -191626051373071219208574650313032502
Offset: 0
Cf. Product_{k>=1} (1 - x^k)^(k^(m*k)):
A010815 (m=0),
A283499 (m=1), this sequence (m=2),
A283536 (m=3).
Cf.
A283579 (Product_{k>=1} 1/(1 - x^k)^(k^(2*k))).
-
A[n_] := Sum[d^(2*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 13}] (* Indranil Ghosh, Mar 11 2017 *)
-
a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^(2*d + 1))*a(n - k)));
for(n=0, 15, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
A283579
Expansion of exp( Sum_{n>=1} A283533(n)/n*x^n ) in powers of x.
Original entry on oeis.org
1, 1, 17, 746, 66418, 9843707, 2187941520, 680615139257, 282199700198462, 150389915598653924, 100155578743010743914, 81505577512720707466924, 79580089689432499741178617, 91814299713761739807846854872
Offset: 0
Cf. Product_{k>=1} 1/(1 - x^k)^(k^(m*k)):
A000041 (m=0),
A023880 (m=1), this sequence (m=2),
A283580 (m=3).
Cf.
A283534 (Product_{k>=1} (1 - x^k)^(k^(2*k))).
-
A[n_] := Sum[d^(2*d + 1), {d, Divisors[n]}]; a[n_] := If[n==0, 1, (1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 13}] (* Indranil Ghosh, Mar 11 2017 *)
-
A(n) = sumdiv(n, d, d^(2*d + 1));
a(n) = if(n==0, 1, (1/n)*sum(k=1, n, A(k)*a(n - k)));
for(n=0, 11, print1(a(n),", ")) \\ Indranil Ghosh, Mar 11 2017
A283535
a(n) = Sum_{d|n} d^(3*d + 1).
Original entry on oeis.org
1, 129, 59050, 67108993, 152587890626, 609359740069674, 3909821048582988050, 37778931862957228818561, 523347633027360537213570571, 10000000000000000000152587890754, 255476698618765889551019445759400442, 8505622499821102144576132293474637113130
Offset: 1
a(6) = 1^(3+1) + 2^(6+1) + 3^(9+1) + 6^(18+1) = 609359740069674.
Cf. Sum_{d|n} d^(k*d+1):
A283498 (k=1),
A283533 (k=2), this sequence (k=3).
-
f[n_] := Block[{d = Divisors[n]}, Total[d^(3 d + 1)]]; Array[f, 12] (* Robert G. Wilson v, Mar 10 2017 *)
-
a(n) = sumdiv(n, d, d^(3*d+1)); \\ Michel Marcus, Mar 11 2017
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(3*k))))) \\ Seiichi Manyama, Jun 18 2019
A308753
a(n) = Sum_{d|n} d^(2*(d-1)).
Original entry on oeis.org
1, 5, 82, 4101, 390626, 60466262, 13841287202, 4398046515205, 1853020188851923, 1000000000000390630, 672749994932560009202, 552061438912436478063702, 542800770374370512771595362, 629983141281877223617054459942
Offset: 1
-
a[n_] := DivisorSum[n, #^(2*(# - 1)) &]; Array[a, 14] (* Amiram Eldar, May 08 2021 *)
-
{a(n) = sumdiv(n, d, d^(2*(d-1)))}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-3)))))
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-1))*x^k/(1-x^k)))
A283369
a(n) = Sum_{d|n} d^(4*d + 1).
Original entry on oeis.org
1, 513, 1594324, 17179869697, 476837158203126, 28430288029931296212, 3219905755813179726837608, 633825300114114700765531472385, 202755595904452569706561330874548093, 100000000000000000000000000476837158203638
Offset: 1
a(6) = 1^(4+1) + 2^(8+1) + 3^(12+1) + 6^(24+1) = 28430288029931296212.
-
Table[Sum[d^(4*d + 1), {d, Divisors[n]}], {n, 20}] (* Indranil Ghosh, Mar 17 2017 *)
-
for(n=1, 20, print1(sumdiv(n, d, d^(4*d + 1)),", ")) \\ Indranil Ghosh, Mar 17 2017
A308704
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d+1).
Original entry on oeis.org
1, 1, 3, 1, 9, 4, 1, 33, 82, 7, 1, 129, 2188, 1033, 6, 1, 513, 59050, 262177, 15626, 12, 1, 2049, 1594324, 67108993, 48828126, 280026, 8, 1, 8193, 43046722, 17179869697, 152587890626, 13060696236, 5764802, 15, 1, 32769, 1162261468, 4398046513153, 476837158203126, 609359740069674, 4747561509944, 134218761, 13
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
3, 9, 33, 129, 513, ...
4, 82, 2188, 59050, 1594324, ...
7, 1033, 262177, 67108993, 17179869697, ...
6, 15626, 48828126, 152587890626, 476837158203126, ...
-
T[n_, k_] := DivisorSum[n, #^(k*# + 1) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
A308756
a(n) = Sum_{d|n} d^(2*(d-2)).
Original entry on oeis.org
1, 2, 10, 258, 15626, 1679627, 282475250, 68719476994, 22876792454971, 10000000000015627, 5559917313492231482, 3833759992447476802059, 3211838877954855105157370, 3214199700417740937033562867, 3787675244106352329254150406260
Offset: 1
-
a[n_] := DivisorSum[n, #^(2*(# - 2)) &]; Array[a, 15] (* Amiram Eldar, May 08 2021 *)
-
{a(n) = sumdiv(n, d, d^(2*(d-2)))}
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-5)))))
-
N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*(k-2))*x^k/(1-x^k)))
Showing 1-7 of 7 results.