cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A342628 a(n) = Sum_{d|n} d^(n-d).

Original entry on oeis.org

1, 2, 2, 6, 2, 45, 2, 322, 731, 3383, 2, 132901, 2, 827641, 10297068, 33570818, 2, 2578617270, 2, 44812807567, 678610493340, 285312719189, 2, 393061010002613, 95367431640627, 302875123369471, 150094917726535604, 569939345952661545, 2, 105474306078445349841, 2
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)))
    
  • Python
    from sympy import divisors
    def A342628(n): return sum(d**(n-d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

G.f.: Sum_{k>=1} x^k/(1 - (k * x)^k).
If p is prime, a(p) = 2.

A308623 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 2^c*10^(2d) with a,b,c,d nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 3, 5, 2, 4, 4, 3, 3, 5, 3, 3, 6, 4, 4, 5, 2, 6, 5, 4, 4, 5, 2, 4, 6, 3, 4, 8, 5, 3, 5, 4, 5, 8, 5, 5, 4, 3, 5, 7, 4, 5, 8, 4, 2, 8, 2, 6, 7, 4, 3, 4, 6, 5, 8, 4, 4, 6, 5, 5, 5, 5, 6, 8, 4, 6, 7, 4, 6, 10, 4, 4, 7, 5, 2, 10, 4, 7, 7, 4, 8, 4, 4, 7, 8, 2, 4, 9, 5, 5, 9, 5, 5, 7, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 11 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Equivalently, any positive integer n can be written as a*(a+1)/2 + b*(b+1)/2 + 2^c*10^(2d) with a,b,c,d nonnegative integers.
This was motivated by A308566, and we verified a(n) > 0 for all n = 1..2*10^8. Then, on the author's request, Giovanni Resta verified the above conjecture for n up to 10^10. G. Resta also noted that 729546026 cannot be written as a*(a+1)/2 + b*(b+1)/2 + 2^c*3^d with a,b,c,d nonnegative integers.
See also A308566, A308594 and A308621 for similar conjectures.

Examples

			a(1) = 1 with 1 = 0*1/2 + 0*1/2 + 2^0*10^(2*0).
a(10107) = 1 with 10107 = 82*83/2 + 96*97/2 + 2^11*10^(2*0).
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-10^(2k)*2^m-x(x+1)/2],r=r+1],{k,0,Log[10,n]/2},{m,0,Log[2,n/10^(2k)]},{x,0,(Sqrt[4(n-10^(2k)*2^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A308668 a(n) = Sum_{d|n} d^(n/d+n).

Original entry on oeis.org

1, 9, 82, 1089, 15626, 287010, 5764802, 135270401, 3487315843, 100244173394, 3138428376722, 107072686593858, 3937376385699290, 155601328490478978, 6568412173896940652, 295165920677390712833, 14063084452067724991010
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Crossrefs

Diagonal of A308502.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n/# + n) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n,d,d^(n/d+n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-k*(k*x)^k)^(1/k)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k^(k+1)*x^k))) \\ Seiichi Manyama, Mar 17 2021
    
  • Python
    from sympy import divisors
    def A308668(n): return sum(d**(n//d+n) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

L.g.f.: -log(Product_{k>=1} (1 - k*(k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k+1) * x^k/(1 - k^(k+1) * x^k). - Seiichi Manyama, Mar 17 2021
a(n) ~ n^(n+1). - Vaclav Kotesovec, Aug 30 2025

A359882 a(n) = Sum_{d|n} d^n * (n/d)^d.

Original entry on oeis.org

1, 6, 30, 324, 3130, 53070, 823550, 17829896, 387951939, 10312525610, 285311670622, 9056807631948, 302875106592266, 11198819379685518, 437901307945957140, 18518802767263301648, 827240261886336764194, 39423330565860716459946
Offset: 1

Views

Author

Seiichi Manyama, Jan 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * (n/#)^# &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*(n/d)^d);

Formula

a(n) = [x^n] Sum_{k>0} (n * x)^k / (1 - (k * x)^k).
If p is prime, a(p) = p + p^p.
Showing 1-4 of 4 results.