cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342629 a(n) = Sum_{d|n} (n/d)^(n-d).

Original entry on oeis.org

1, 3, 10, 69, 626, 7866, 117650, 2101265, 43047451, 1000390658, 25937424602, 743069105634, 23298085122482, 793728614541474, 29192926269590300, 1152925902670135553, 48661191875666868482, 2185913413229070900339, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^(n - #) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(n-d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-k^(k-1)*x^k)))
    
  • Python
    from sympy import divisors
    def A342629(n): return sum((n//d)**(n-d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

G.f.: Sum_{k>=1} k^(k-1) * x^k/(1 - k^(k-1) * x^k).
If p is prime, a(p) = 1 + p^(p-1).

A308594 a(n) = Sum_{d|n} d^(d+n).

Original entry on oeis.org

1, 17, 730, 65601, 9765626, 2176802276, 678223072850, 281474993488897, 150094635297530563, 100000000030517582222, 81402749386839761113322, 79496847203492408399442540, 91733330193268616658399616010, 123476695691248494372093865205800
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    sp[n_]:=Module[{d=Divisors[n]},Table[d[[k]]^(d[[k]]+n),{k,Length[ d]}]] // Total; Array[sp,15] (* Harvey P. Dale, Jan 02 2020 *)
    a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1))))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021
    
  • Python
    from sympy import divisors
    def A308594(n): return sum(d**(d+n) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} (k^2 * x)^k/(1 - (k * x)^k). - Seiichi Manyama, Mar 16 2021
Showing 1-2 of 2 results.