cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A308814 a(n) = Sum_{d|n} n^(d-1).

Original entry on oeis.org

1, 3, 10, 69, 626, 7819, 117650, 2097673, 43046803, 1000010011, 25937424602, 743008621405, 23298085122482, 793714780783695, 29192926025441476, 1152921504875286545, 48661191875666868482, 2185911559749718382455, 104127350297911241532842, 5242880000000512000168021
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[n^(Divisors[n]-1)],{n,20}] (* Harvey P. Dale, Aug 08 2019 *)
  • PARI
    {a(n) = sumdiv(n, d, n^(d-1))}

Formula

a(n) = A308813(n,n).
a(n) = A066108(n)/n.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 05 2021

A320444 Number of uniform hypertrees spanning n vertices.

Original entry on oeis.org

1, 1, 1, 4, 17, 141, 1297, 17683, 262145, 4861405, 100112001, 2371816701, 61917364225, 1796326510993, 56693912375297, 1947734359001551, 72059082110369793, 2863257607266475419, 121439531096594251777, 5480987217944109919765, 262144000000000000000001
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Comments

The density of a hypergraph is the sum of sizes of its edges minus the number of edges minus the number of vertices. A hypertree is a connected hypergraph of density -1. A hypergraph is uniform if its edges all have the same size. The span of a hypergraph is the union of its edges.

Examples

			Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141:
   5 X {{1,5},{2,5},{3,5},{4,5}}
  60 X {{1,4},{2,5},{3,5},{4,5}}
  60 X {{1,3},{2,4},{3,5},{4,5}}
  15 X {{1,2,5},{3,4,5}}
   1 X {{1,2,3,4,5}}
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc:
    f(0):= 1: f(1):= 1:
    map(f, [$0..25]); # Robert Israel, Jan 10 2019
  • Mathematica
    Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}]
  • PARI
    a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ Michel Marcus, Jan 10 2019

Formula

a(n + 1) = Sum_{d|n} n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1).
a(p prime) = 1 + (p + 1)^(p - 1).

A308701 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*(d-1)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 10, 3, 1, 9, 82, 67, 2, 1, 17, 730, 4101, 626, 4, 1, 33, 6562, 262153, 390626, 7788, 2, 1, 65, 59050, 16777233, 244140626, 60466262, 117650, 4, 1, 129, 531442, 1073741857, 152587890626, 470184985314, 13841287202, 2097219, 3
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Examples

			Square array begins:
   1,   1,      1,         1,            1, ...
   2,   3,      5,         9,           17, ...
   2,  10,     82,       730,         6562, ...
   3,  67,   4101,    262153,     16777233, ...
   2, 626, 390626, 244140626, 152587890626, ...
		

Crossrefs

Columns k=0..2 give A000005, A262843, A308753.
Row n=1..3 give A000012, A000051, A062396.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*(# - 1)) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j-k-1))).
G.f. of column k: Sum_{j>=1} j^(k*(j-1)) * x^j/(1 - x^j).

A308755 a(n) = Sum_{d|n} d^(d-2).

Original entry on oeis.org

1, 2, 4, 18, 126, 1301, 16808, 262162, 4782973, 100000127, 2357947692, 61917365541, 1792160394038, 56693912392105, 1946195068359504, 72057594038190098, 2862423051509815794, 121439531096599036046, 5480386857784802185940, 262144000000000100000143
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d-2))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(k-3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(k-3))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - x^k).

A321386 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^(d-1).

Original entry on oeis.org

1, 1, 10, 61, 626, 7768, 117650, 2097085, 43046731, 999999376, 25937424602, 743008362964, 23298085122482, 793714773136496, 29192926025391260, 1152921504604749757, 48661191875666868482, 2185911559738653493015, 104127350297911241532842, 5242879999999998999999436, 278218429446951548637314060
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d^(d - 1), {d, Divisors[n]}], {n, 21}]
    nmax = 21; Rest[CoefficientList[Series[Sum[k^(k - 1) x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^(d-1)); \\ Michel Marcus, Nov 09 2018

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 + x^k).
a(n) ~ n^(n-1). - Vaclav Kotesovec, Nov 09 2018

A383003 a(n) = Sum_{d|n} (-n)^(d-1).

Original entry on oeis.org

1, -1, 10, -67, 626, -7745, 117650, -2097671, 43046803, -999990009, 25937424602, -743008621115, 23298085122482, -793714765724621, 29192926025441476, -1152921504875286543, 48661191875666868482, -2185911559727678460653, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-n)^(d-1));

Formula

a(n) = (1/n) * A383010(n).
a(n) = [x^n] Sum_{k>=1} log(1 + n*x^k) / k.
a(n) = [x^n] Sum_{k>=1} x^k / (1 + n*x^k).

A262842 G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-2)).

Original entry on oeis.org

1, 1, 2, 5, 22, 150, 1469, 18452, 282426, 5088276, 105431378, 2469403421, 64508609896, 1859464257187, 58625171707730, 2006861834895431, 74128128916520263, 2938711927441481562, 124457492116819509679, 5607967808192795374759, 267883606645817181302028, 13522287374792657280601627, 719232962773594118661491002, 40204966834965724305054746851
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2015

Keywords

Examples

			 G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 +...
where
A(x) = 1/((1-x)*(1-x^2)*(1-x^3)^3*(1-x^4)^16*(1-x^5)^125*(1-x^6)^1296*...)
also
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 + 117650*x^7/7 + 2097219*x^8/8 + 43046731*x^9/9 + 1000000628*x^10/10 +...+ A262843(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 - x^k +x*O(x^n))^(-k^(k-2))), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} d^(d-1) ).
Logarithmic derivative equals A262843, where A262843(n) = Sum_{d|n} d^(d-1).

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025

A345094 a(n) = Sum_{k=1..n} floor(n/k)^(floor(n/k) - 1).

Original entry on oeis.org

1, 3, 11, 68, 630, 7790, 117664, 2097224, 43046801, 1000000643, 25937425245, 743008378547, 23298085130341, 793714773371879, 29192926025508929, 1152921504608944840, 48661191875668966346, 2185911559738739586562, 104127350297911284587436
Offset: 1

Views

Author

Seiichi Manyama, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/k]^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Jun 08 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\k)^(n\k-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^j)*sum(k=1, N, k^(k-1)*x^(j*k)))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{j>=1} Sum_{k>=1} k^(k-1) * x^(j*k) * (1 - x^j).

A354889 a(n) = n! * Sum_{d|n} d^(d-1) / d!.

Original entry on oeis.org

1, 4, 15, 112, 745, 10296, 122689, 2285312, 43953921, 1026157600, 25977341401, 751135431168, 23304312143281, 795924137531264, 29203006015310625, 1154107395053387776, 48661547563094964481, 2186762596692631699968, 104127471943011650364841
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^(# - 1)/#! &]; Array[a, 19] (* Amiram Eldar, Jun 10 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^(d-1)/d!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k^(k-1)*x^k/(k!*(1-x^k)))))

Formula

E.g.f.: Sum_{k>0} k^(k-1) * x^k/(k! * (1 - x^k)).
If p is prime, a(p) = p^(p-1) + p!.
Showing 1-10 of 13 results. Next