cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321388 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-2)).

Original entry on oeis.org

1, 1, 1, 4, 19, 144, 1443, 18295, 280918, 5069651, 105147307, 2464296222, 64402891501, 1856989724951, 58560557062508, 2004999890781363, 74069439021212783, 2936703201134924845, 124383305232306494864, 5605027085651919547476, 267759074907470856179460, 13516676464234372267564939
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2018

Keywords

Comments

Weigh transform of A000272.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 + x^k)^(k^(k-2)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    a:=series(mul((1+x^k)^(k^(k-2)),k=1..100),x=0,22): seq(coeff(a,x,n),n=0..21); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,(1+x^k)^(k^(k-2)))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d-1) ) * x^k/k).
a(n) ~ n^(n-2) * (1 + exp(-1)/n + (5*exp(-1)/2 + exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018

A373275 a(n) = Sum_{d|n} (-1)^(d-1) * 2^(n/d-1).

Original entry on oeis.org

1, 1, 5, 5, 17, 29, 65, 117, 261, 497, 1025, 2017, 4097, 8129, 16405, 32629, 65537, 130845, 262145, 523765, 1048645, 2096129, 4194305, 8386641, 16777233, 33550337, 67109125, 134209477, 268435457, 536855053, 1073741825, 2147450741, 4294968325, 8589869057
Offset: 1

Views

Author

Seiichi Manyama, May 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*2^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x)^k/(1+x^k))/2)

Formula

G.f.: 1/2 * Sum_{k>=1} (2*x)^k / (1 + x^k).
If p is an odd prime, a(p) = 1 + 2^(p-1).

A373276 a(n) = Sum_{d|n} (-1)^(d-1) * 3^(n/d-1).

Original entry on oeis.org

1, 2, 10, 23, 82, 236, 730, 2156, 6571, 19604, 59050, 176918, 531442, 1593596, 4783060, 14346689, 43046722, 129133838, 387420490, 1162241726, 3486785140, 10460294156, 31381059610, 94143003584, 282429536563, 847288078004, 2541865834900, 7625595889958
Offset: 1

Views

Author

Seiichi Manyama, May 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*3^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (3*x)^k/(1+x^k))/3)

Formula

G.f.: 1/3 * Sum_{k>=1} (3*x)^k / (1 + x^k).
If p is an odd prime, a(p) = 1 + 3^(p-1).
Showing 1-3 of 3 results.