cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262843 Inverse Moebius transform of n^(n-1).

Original entry on oeis.org

1, 3, 10, 67, 626, 7788, 117650, 2097219, 43046731, 1000000628, 25937424602, 743008378540, 23298085122482, 793714773371796, 29192926025391260, 1152921504608944195, 48661191875666868482, 2185911559738739586477, 104127350297911241532842, 5242880000000001000000692, 278218429446951548637314060
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2015

Keywords

Comments

Logarithmic derivative of A262842.

Examples

			O.g.f.: A(x) = x + 3*x^2 + 10*x^3 + 67*x^4 + 626*x^5 + 7788*x^6 +...
where
A(x) = x/(1-x) + 2*x^2/(1-x^2) + 3^2*x^3/(1-x^3) + 4^3*x^4/(1-x^4) + 5^4*x^5/(1-x^5) + 6^5*x^6/(1-x^6) +...+ n^(n-1)* x^n/(1 -x^n) +...
Logarithmic generating function.
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 +...
where
exp(L(x)) = 1/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^16 * (1-x^5)^125 * (1-x^6)^1296 *...* (1-x^n)^(n^(n-2)) *...).
Explicitly,
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 + 18452*x^7 + 282426*x^8 +...+ A262842(n)*x^n ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#-1) &]; Array[a, 30] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    {a(n)=sumdiv(n,d, d^(d-1))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n, m^(m-1)*x^m/(1-x^m +x*O(x^n))), n)}
    for(n=1,30,print1(a(n),", "))
    
  • Python
    from sympy import divisors
    def A262843(n): return sum(d**(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

a(n) = Sum{d|n} d^(d-1).
G.f.: Sum_{n>=1} n^(n-1) * x^n/(1 - x^n).

A321388 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-2)).

Original entry on oeis.org

1, 1, 1, 4, 19, 144, 1443, 18295, 280918, 5069651, 105147307, 2464296222, 64402891501, 1856989724951, 58560557062508, 2004999890781363, 74069439021212783, 2936703201134924845, 124383305232306494864, 5605027085651919547476, 267759074907470856179460, 13516676464234372267564939
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2018

Keywords

Comments

Weigh transform of A000272.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 + x^k)^(k^(k-2)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    a:=series(mul((1+x^k)^(k^(k-2)),k=1..100),x=0,22): seq(coeff(a,x,n),n=0..21); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,(1+x^k)^(k^(k-2)))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d-1) ) * x^k/k).
a(n) ~ n^(n-2) * (1 + exp(-1)/n + (5*exp(-1)/2 + exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018
Showing 1-2 of 2 results.