cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228175 Least positive k such that n^n * k^k + 1 is a prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 5, 2, 7, 10, 8
Offset: 0

Views

Author

Alex Ratushnyak, Nov 02 2013

Keywords

Comments

The next terms after the missing a(11) are 31, 58, 4, 596, 3.
a(11) > 20000 or a(11) = 0, a(17) = 4308, a(18) = 1073, a(19) > 20000 or a(19) = 0. - Jason Yuen, May 21 2024
a(11) > 10^5 or a(11) = 0. a(19) > 10^5 or a(19) = 0. - Jason Yuen, Feb 27 2025

Examples

			3^3 * 1 + 1 = 28 is not a prime, 3^3 * 2^2 + 1 = 109 is a prime, so a(3) = 2.
		

Crossrefs

Programs

  • Java
    import java.math.BigInteger;
    public class A228175 {
      public static void main (String[] args) {
        for (int n = 0; n < 333; n++) {
          BigInteger nn = BigInteger.valueOf(n).pow(n);
          int k = 1;
          for (; k<10000; k++) {
            BigInteger kk = BigInteger.valueOf(k).pow(k).multiply(nn).add(BigInteger.ONE);
            if (kk.isProbablePrime(80)) {
              System.out.printf("%d, ", k);
              break;
            }
          }
          if (k==10000) System.out.printf("- ");
        }
      }
    }
    
  • PARI
    A228175(n,L=9e9,s=1)={forstep(k=s+(bittest(n,0)&&n>1&&bittest(s,0)), L, 1+bittest(n,0), ispseudoprime(n^n*k^k+1)&&return(k))} \\ Optional args allow specification of start and limit for search; for odd n > 1, only check even k. - M. F. Hasler, Nov 03 2013

Formula

a(n) = A231119(n^n). - Jason Yuen, Nov 15 2024

A228174 Numbers representable as x^x * y^y, with x > y > 1.

Original entry on oeis.org

108, 1024, 6912, 12500, 84375, 186624, 800000, 1259712, 3294172, 11943936, 22235661, 67108864, 145800000, 210827008, 452984832, 1549681956, 2573571875, 4294967296, 10460353203, 38423222208, 40000000000, 52428800000, 99179645184, 270000000000, 782757789696
Offset: 1

Views

Author

Alex Ratushnyak, Nov 02 2013

Keywords

Comments

A subsequence of A156223.

Examples

			a(7) = 4^4 * 5^5 = 800000.
		

Crossrefs

Programs

  • Mathematica
    nn = 12; Select[Rest[Union[Flatten[Table[If[x > y, x^x*y^y, 0], {x, 3, nn}, {y, 2, nn - 1}]]]], # <= 4*nn^nn &] (* T. D. Noe, Nov 04 2013 *)

A228238 Primes of the form x^x * y^y + 1.

Original entry on oeis.org

2, 5, 17, 109, 257, 65537, 3294173, 145800001, 210827009, 13816758796289, 167772160000000001, 2844673747342852097, 3874204890000000001, 498062089990157893633, 15191686954694985266495489, 355271367880050092935562133789062501
Offset: 1

Views

Author

Alex Ratushnyak, Nov 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 40; Join[{2}, Select[Rest[Union[Flatten[Table[x^x*y^y + 1, {x, nn}, {y, x, nn}]]]], # <= nn^nn + 1 && PrimeQ[#] &]] (* T. D. Noe, Nov 04 2013 *)
Showing 1-3 of 3 results.