cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349965 a(n) = Sum_{k=0..n} (k * (n-k))^k.

Original entry on oeis.org

1, 1, 2, 7, 47, 513, 8020, 169227, 4637965, 159568981, 6684686230, 332681461871, 19316990453131, 1292074091000105, 98636639620170792, 8528989125071254867, 829516920337723299465, 90124512307642049807293, 10865612430780251465538154
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, (k*(n - k))^k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*(n-k))^k);

Formula

log(a(n)) ~ n*(2*log(n) - 1 + (1/(2*log(n)) - 1)*log(2*log(n))). - Vaclav Kotesovec, Dec 07 2021

A053729 Self-convolution of 1,4,27,256,3125,46656,... (cf. A000312).

Original entry on oeis.org

1, 8, 70, 728, 9027, 132136, 2254620, 44262200, 987183525, 24718587592, 687457908306, 21034757596184, 702270963692039, 25400848001674856, 989240042333246072, 41263578858484555512, 1835070614332428285513
Offset: 1

Views

Author

Leroy Quet, Feb 11 2000

Keywords

Examples

			a(4) = 1^1 *4^4 +2^2 *3^3 +3^3 *2^2 +4^4 *1^1 = 1*256 +4*27 +27*4 +256*1 = 728.
		

Crossrefs

Programs

  • Mathematica
    nn=20;f[x_]=Sum[n^n x^n,{n,1,nn}];CoefficientList[Series[f[x]^2/x^2,{x,0,nn}],x] (* Geoffrey Critzer, Nov 05 2013 *)
    Table[Sum[k^k*(n+1-k)^(n+1-k), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
  • Python
    def A053729(n): return sum((k**k)*(n+1-k)**(n+1-k) for k in range(1,n+1)) # John Tyler Rascoe, Aug 23 2024

Formula

a(n) = Sum_{k=1..n} k^k * (n+1-k)^(n+1-k).
a(n) ~ 2 * n^n. - Vaclav Kotesovec, Mar 10 2018

Extensions

More terms from James Sellers, Feb 22 2000

A349966 a(n) = Sum_{k=0..n} (k * (n-k))^n.

Original entry on oeis.org

1, 0, 1, 16, 418, 17600, 1086979, 92223488, 10292241540, 1462309109760, 257739952352133, 55188518041440256, 14111052911099343782, 4246668467339066589184, 1485904567816768099571207, 598145009954138900489830400
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k*(n - k))^n, {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*(n-k))^n);

Formula

a(n) = [x^n] (Sum_{k=0..n} k^n * x^k)^2.
a(n) ~ sqrt(Pi) * n^(2*n + 1/2) / 2^(2*n + 1). - Vaclav Kotesovec, Dec 07 2021

A350008 a(n) = Sum_{k=0..n} k^(2*k).

Original entry on oeis.org

1, 2, 18, 747, 66283, 9831908, 2186614244, 680409687093, 282155386397749, 150376790683396870, 100150376790683396870, 81502899763630444510191, 79578350103154474577951727, 91812908543371771132977567736
Offset: 0

Views

Author

Seiichi Manyama, Dec 08 2021

Keywords

Comments

Partial sums of A062206.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, k^(2*k)], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(2*k));

Formula

a(n) ~ n^(2*n). - Vaclav Kotesovec, Dec 08 2021

A349874 Expansion of A(x)^3, where A(x) is g.f. of n^n (A000312).

Original entry on oeis.org

1, 3, 15, 106, 990, 11688, 168529, 2886039, 57372984, 1299676869, 33049616319, 931991169660, 28856822050546, 972979199567826, 35480222492288493, 1391109691131953417, 58351612093156552572, 2607190821521732751855, 123613763047459102476027
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 + Sum[n^n * x^n, {n,1,nmax}])^3, {x,0,nmax}],x]

Formula

a(n) ~ 3 * n^n.
Showing 1-5 of 5 results.