cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366819 a(n) is the sum of the divisors of n^n-1.

Original entry on oeis.org

4, 42, 432, 6048, 67584, 1704240, 38054016, 967814400, 16203253248, 513593801496, 15743437516800, 720045832568832, 19146847615988736, 835966563470742528, 31421980989189888768, 1602925310146310674200, 52064744760120508416000, 4286575920597346109768658
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[1, #^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = sigma(n^n-1);

Formula

a(n) = A000203(A048861(n)).

A275123 Even numbers n such that sigma(n) divides sigma(n^n).

Original entry on oeis.org

4, 16, 64, 100, 196, 484, 676, 1024, 1156, 1296, 1444, 1936, 2116, 3364, 3844, 4096, 4900, 5476, 5776, 6400, 6724, 7396, 8836, 10816, 11236, 12100, 13456, 13924, 14884, 15376, 16900, 17956, 20164, 21316, 23716, 24964, 26896, 27556, 28900, 31684, 33124, 36100
Offset: 1

Views

Author

Altug Alkan, Jul 18 2016

Keywords

Comments

A number n with prime factorization Product_i p_i^(e_i) is in the sequence iff Product_i ((p_i^(e_i*n+1)-1)/(p_i^(e_i+1)-1)) is an integer. - Robert Israel, Jul 19 2016
Does this sequence consist of the even numbers n such that A000005(n) divides A000005(n^n)? The answer is no according to the b-file since 50176 is missing (((2^(10*50176+1)-1)*(7^(2*50176+1)-1)) mod ((2^11-1)*(7^3-1)) = 372438 and (10*50176+1)*(2*50176+1) mod (11*3) = 0). Note that 50176 is the least number with this property.

Examples

			4 is a term because sigma(4^4) = 511 is divisible by sigma(4) = 7.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,t,b,r;
      F:= ifactors(n)[2];
      b:= mul(t[1]^(t[2]+1)-1, t=F);
      r:= 1;
      for t in F do r:= r * (t[1] &^ (t[2]*n+1)-1) mod b od;
      r = 0;
    end proc:
    select(filter, [seq(i,i=2..10^5,2)]); # Robert Israel, Jul 19 2016
  • Mathematica
    Select[Range[2, 10^4, 2], Divisible[DivisorSigma[1, #^#], DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    /* Requires a large PARI stack to return even the first few terms */
    is(n) = Mod(n, 2)==0 && Mod(sigma(n^n), sigma(n))==0 \\ Felix Fröhlich, Jul 19 2016

Extensions

a(8)-a(22) from Michel Marcus, Jul 19 2016
More terms from Robert Israel, Jul 19 2016

A275391 Least k such that n divides sigma(k^k) (k > 0).

Original entry on oeis.org

1, 3, 5, 3, 3, 5, 2, 3, 5, 3, 19, 11, 11, 5, 15, 7, 15, 5, 11, 3, 5, 19, 10, 11, 7, 11, 17, 11, 13, 15, 5, 7, 29, 15, 23, 11, 11, 11, 11, 3, 15, 5, 35, 19, 23, 21, 22, 15, 13, 7, 15, 11, 23, 17, 19, 11, 11, 13, 28, 15, 11, 5, 5, 15, 15, 29, 21, 15, 65, 23, 34, 11, 4, 11, 29, 11, 39, 11, 23, 7, 17
Offset: 1

Views

Author

Altug Alkan, Aug 07 2016

Keywords

Comments

From Robert Israel, Aug 09 2016: (Start)
a(n) <= A038700(n) if n >= 4, since sigma(k^k) == 0 (mod n) if k is an odd prime == -1 (mod n).
If n is prime and n-2 is squarefree, then a(n) <= n-2 since sigma((n-2)^(n-2)) == 0 (mod n).
Conjecture: a(n) <= n-2 for all n > 15, but a(n) = n-2 for infinitely many n. (End)

Examples

			a(11) = 19 because sigma(19^19) is divisible by 11.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    S:= {$1..N}:
    for k from 1 while S <> {} do
      v:= numtheory:-sigma(k^k);
      F:= select(t -> v mod t = 0, S);
      for n in F do A[n]:= k od:
      S:= S minus F;
    od:
    seq(A[n],n=1..N); # Robert Israel, Aug 09 2016
  • PARI
    a(n) = {my(k=1); while(sigma(k^k) % n != 0, k++); k; }

A366820 a(n) is the sum of the divisors of n^n + 1.

Original entry on oeis.org

3, 3, 6, 56, 258, 6264, 52136, 1559520, 17041416, 706911048, 10102223208, 706019328000, 9101898907920, 519285252355776, 11672709747324912, 880565163670372352, 18446811354131136516, 1792353900753729655758, 54357680125881245248800, 4154723599066412190910560
Offset: 0

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {3}~Join~Array[DivisorSigma[1, #^# + 1] &, 19] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = sigma(n^n+1);

Formula

a(n) = A000203(A014566(n)).

A275800 n such that A275391(n) = n-2.

Original entry on oeis.org

5, 13, 17, 139, 173, 179, 467, 907, 1553, 1619, 1867, 2099, 2819, 2957, 3203, 3779, 3947, 4139, 4157, 4283, 4547, 4723, 5483, 6653, 6899, 7013, 7187, 7523, 7643, 8147, 8387, 8563, 8573, 8753, 9533, 9587, 10589, 10853, 10883, 10979, 11003, 12107, 12227, 13037, 13229, 13829, 14243, 14549, 14699, 14867, 15299, 16217, 16547, 16649, 17387, 18443, 18587, 19259
Offset: 1

Views

Author

Robert Israel, Aug 09 2016

Keywords

Comments

n such that n-2 is the least k such that n divides A062727(k) = sigma(k^k).
Are all terms prime?

Examples

			17 is in the sequence because 17 divides sigma(15^15) = 821051025385244160 but does not divide sigma(k^k) for any k < 15.
		

Crossrefs

Programs

  • Maple
    N:= 20000:
    S:= {$1..N}: # to get terms <= N
    for kk from 1 while S <> {} do
       v:= numtheory:-sigma(kk^kk);
       F:= select(t -> v mod t = 0, S);
       for nn in F do
         B[nn]:= kk
       od;
       S:= S minus F;
    od:
    select(t -> B[t]=t-2, [$1..N]);

A309377 a(n) is the product of the divisors of n^n (A000312).

Original entry on oeis.org

1, 1, 8, 729, 68719476736, 30517578125, 2444746349972956194083608044935243159422957210683702349648543934214737968217920868940091707112078529114392164827136, 459986536544739960976801, 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397376
Offset: 0

Views

Author

Hauke Löffler, Jul 26 2019

Keywords

Comments

Subset of A007955.

Examples

			a(0) = 1 because 0^0 = 1, whose only divisor is 1, so the product of divisors is 1.
a(1) = 1 because 1^1 = 1, so the product of divisors is 1.
a(3) = 729 because 3^3 = 27, whose divisors are (1, 3, 9, 27), and their product is 729.
		

Crossrefs

Programs

  • Magma
    [&*Divisors(n^n): n in [0..8]]; // Marius A. Burtea, Jul 26 2019
    
  • Python
    from math import isqrt, prod
    from sympy import factorint
    def A309377(n): return (isqrt(n**n) if (c:=prod(n*e+1 for e in factorint(n).values())) & 1 else 1)*n**(n*(c//2)) # Chai Wah Wu, Jun 25 2022
  • SageMath
    [ product((1*i^i).divisors()) for i in range(10) ]
    
Showing 1-6 of 6 results.