cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377677 a(n) is the sum of the divisors of n^n - n.

Original entry on oeis.org

3, 60, 728, 10416, 116064, 2837120, 36990720, 1452853584, 27615698352, 965243666880, 23861701899840, 1355882884941312, 20758574413420992, 1604569397488307712, 93340493714183159808, 3135286584767445151680, 90560273718863022770592, 8284620870197084160000000
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n^n - n]; Array[a, 20, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = sigma(n^n-n);

Formula

a(n) = A000203(A061190(n)).

A366821 a(n) is phi(n^n-1) where phi is the Euler totient function.

Original entry on oeis.org

2, 12, 128, 1400, 30240, 264992, 6635520, 141087744, 5890320000, 114117380608, 4662793175040, 99053063903040, 5470524984113280, 167080949856000000, 9208981628670443520, 413582117375670921216, 29531731481729468006400, 659473218553437863041320
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[phi](n^n-1):
    seq(a(n), n=2..20);  # Alois P. Heinz, Oct 26 2023
  • Mathematica
    Array[EulerPhi[#^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n-1);

Formula

a(n) = A000010(A048861(n)).

A366820 a(n) is the sum of the divisors of n^n + 1.

Original entry on oeis.org

3, 3, 6, 56, 258, 6264, 52136, 1559520, 17041416, 706911048, 10102223208, 706019328000, 9101898907920, 519285252355776, 11672709747324912, 880565163670372352, 18446811354131136516, 1792353900753729655758, 54357680125881245248800, 4154723599066412190910560
Offset: 0

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {3}~Join~Array[DivisorSigma[1, #^# + 1] &, 19] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = sigma(n^n+1);

Formula

a(n) = A000203(A014566(n)).
Showing 1-3 of 3 results.