cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hauke Löffler

Hauke Löffler's wiki page.

Hauke Löffler has authored 19 sequences. Here are the ten most recent ones:

A325943 a(n) = floor(n / omega(n)) where omega = A001221.

Original entry on oeis.org

2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 6, 13, 7, 7, 16, 17, 9, 19, 10, 10, 11, 23, 12, 25, 13, 27, 14, 29, 10, 31, 32, 16, 17, 17, 18, 37, 19, 19, 20, 41, 14, 43, 22, 22, 23, 47, 24, 49, 25, 25, 26, 53, 27, 27, 28, 28, 29, 59, 20, 61, 31, 31, 64, 32, 22, 67, 34, 34, 23
Offset: 2

Author

Hauke Löffler, Sep 09 2019

Keywords

Examples

			a(2) = 2; 2 has one distinct prime divisor {2}, so a(2) = floor(2/1) = 2.
a(10) = 5; 10 has two distinct prime divisors {2,5}, so a(10) = floor(10/2) = 5.
a(15) = 7; 15 has two distinct prime divisors {3,5}, so a(15) = floor(15/2) = 7.
		

Programs

  • SageMath
    [ n // (len(prime_divisors(n))) for n in range(2, 20) ]

A325938 a(n) = omega(n)^tau(n), where omega=A001221 and tau=A000005.

Original entry on oeis.org

0, 1, 1, 1, 1, 16, 1, 1, 1, 16, 1, 64, 1, 16, 16, 1, 1, 64, 1, 64, 16, 16, 1, 256, 1, 16, 1, 64, 1, 6561, 1, 1, 16, 16, 16, 512, 1, 16, 16, 256, 1, 6561, 1, 64, 64, 16, 1, 1024, 1, 64, 16, 64, 1, 256, 16, 256, 16, 16, 1, 531441, 1, 16, 64, 1, 16, 6561, 1, 64
Offset: 1

Author

Hauke Löffler, Sep 09 2019

Keywords

Examples

			a(5) = 1; 5 has one distinct prime divisor {5} and two divisors {1,5}, so a(5) = 1^2 = 1.
a(6) = 16; 6 has two distinct prime divisors {2,3} and four divisors {1,2,3,6}, so a(6) = 2^4 = 16.
		

Crossrefs

Cf. A000005(tau), A001221(omega), A110088, A248577.

Programs

  • PARI
    a(n) = {omega(n)^numdiv(n)} \\ Andrew Howroyd, Sep 09 2019
  • SageMath
    [ len(prime_divisors(x))^(len(divisors(x))) for x in range(1,20) ]
    

Formula

a(n) = A001221(n) ^ A000005(n).

A309548 Numbers k such that sigma(k)! - 1 is prime, where sigma is A000203.

Original entry on oeis.org

2, 3, 4, 5, 6, 11, 13, 21, 29, 31, 37, 170, 180, 214, 234, 265, 362, 369, 10734, 14318, 19679, 19876, 39636, 48784, 62517, 76225, 77277, 83629, 85519, 90649, 92287
Offset: 1

Author

Hauke Löffler, Aug 07 2019

Keywords

Examples

			2 is a term because sigma(2) = 3. 3! - 1 = 5, a prime.
6 is a term because sigma(6) = 12. 12! - 1 = 479001599, a prime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(sigma(n)!-1); \\ Michel Marcus, Aug 07 2019
  • SageMath
    [n for n in range(1,150) if is_prime(factorial(sigma(n))-1)]
    

Extensions

a(12)-a(24) from Daniel Suteu, Aug 07 2019
a(25)-a(31) from Amiram Eldar, May 14 2023

A309432 Number of distinct digits in decimal representation of n^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 4, 4, 3, 3, 4, 4, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4
Offset: 0

Author

Hauke Löffler, Aug 01 2019

Keywords

Examples

			a(0) = 1 because 0^2 = 0 has 1 distinct digit (0).
a(5) = 2 because 5^2 = 25 has 2 distinct digits (2, 5).
a(10) = 2 because 10^2 = 100 has 2 distinct digits (0, 1).
		

Crossrefs

Programs

A309415 Number of different numbers that are formed by permuting digits of n!.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 6, 12, 60, 360, 1260, 10080, 15120, 25200, 1247400, 32432400, 12612600, 6810804000, 7264857600, 185253868800, 1005663859200, 1117404288000, 4839757322400, 93504111468768000, 37401644587507200, 160787493266400000, 13023786954578400000
Offset: 0

Author

Hauke Löffler, Jul 30 2019

Keywords

Comments

a(0) = 1 because 0! = 1 has one permutation (1).
a(4) = 2 because 4! = 24 has two permutations (24, 42).
a(5) = 6 because 5! = 120 has 6 permutations (012, 021, 102, 120, 201, 210).

Crossrefs

Programs

  • Haskell
    import Data.List (permutations, nub)
    factorial n = product [1..n]
    a309415 n = length $ nub $ permutations $ show $ factorial n
    map a309415 [0..]
  • Maple
    a:= n-> (l-> combinat[multinomial](add(i, i=l), l[])
          )([coeffs(add(x^i, i=convert(n!, base, 10)))]):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 30 2019
  • Mathematica
    a[n_] := Block[{w = IntegerDigits[n!]}, Length[w]! / Times @@ ((Last /@ Tally[w])!)]; Array[a, 26, 0] (* Giovanni Resta, Jul 30 2019 *)

Extensions

More terms from Giovanni Resta, Jul 30 2019

A309406 Absolute lucky numbers: every permutation of digits is a lucky number.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 31, 33, 37, 51, 73, 99, 111, 115, 151, 339, 393, 511, 777, 933, 9999, 33333, 55555, 111111, 777777, 7777777, 55555555
Offset: 1

Author

Hauke Löffler, Jul 29 2019

Keywords

Comments

More terms are in A031882, as A031882 is a subset of this sequence.
No more terms below 10^9. - Amiram Eldar, Nov 16 2019

Examples

			a(6) = 15 because 15 and 51 are lucky numbers.
a(14) = 115 because (115, 151, 511) are all lucky numbers.
		

Crossrefs

Extensions

a(25)-a(27) from Amiram Eldar, Nov 16 2019

A309399 Number of lucky numbers l between powers of 2, 2^n < l <= 2^(n+1).

Original entry on oeis.org

0, 1, 1, 3, 3, 6, 12, 21, 38, 71, 123, 234, 427, 791, 1477, 2774, 5222, 9849, 18659, 35412, 67410, 128644, 245959, 471166, 904186, 1738238, 3346542, 6452030, 12455921, 24076458, 46591766, 90258683, 175029533
Offset: 0

Author

Hauke Löffler, Jul 28 2019

Keywords

Examples

			a(0) = 0 because there are no lucky numbers between 1 (2^0) and 2 (2^1).
a(3) = 3 because there are 3 lucky numbers (9, 13, 15) between 8 (2^3) and 16 (2^4).
		

Crossrefs

Programs

  • SageMath
    def lucky(n):
      L=list(range(1, n+1, 2)); j=1
      while L[j] <= len(L)-1:
        L=[L[i] for i in range(len(L)) if (i+1)%L[j]!=0]
        j+=1
      return(L)
    A000959=lucky(1048576)
    def lucky_range(a, b):
        lucky = []
        for l in A000959:
            if l >= b:
                return lucky
            if l>=a: lucky.append(l)
    [ len(lucky_range((2^n)+1,2^(n+1))) for n in range(19)]

Extensions

a(19)-a(30) from Giovanni Resta, May 10 2020
a(31)-a(32) from Kevin P. Thompson, Nov 22 2021

A309396 Number of lucky numbers <= n!.

Original entry on oeis.org

1, 1, 1, 2, 7, 26, 115, 614, 3866, 28339, 237017, 2227657, 23233568, 266201749
Offset: 0

Author

Hauke Löffler, Jul 28 2019

Keywords

Examples

			a(1) = 1 because there is one lucky number (1) <= 1 (1!).
a(3) = 2 because there are two lucky numbers (1, 3) <= 6 (3!).
		

Crossrefs

Programs

  • SageMath
    def lucky(n):
      L=list(range(1, n+1, 2)); j=1
      while L[j] <= len(L)-1:
        L=[L[i] for i in range(len(L)) if (i+1)%L[j]!=0]
        j+=1
      return(L)
    A000959=lucky(factorial(10))
    def lucky_range(a,b):
        lucky = []
        for l in A000959:
            if l >= b:
                return lucky
            if l>=a: lucky.append(l)
    [ len(lucky_range(0,factorial(n)+1)) for n in range(10) ]

Extensions

a(10)-a(12) from Giovanni Resta, May 10 2020
a(13) from Kevin P. Thompson, Nov 24 2021

A309377 a(n) is the product of the divisors of n^n (A000312).

Original entry on oeis.org

1, 1, 8, 729, 68719476736, 30517578125, 2444746349972956194083608044935243159422957210683702349648543934214737968217920868940091707112078529114392164827136, 459986536544739960976801, 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397376
Offset: 0

Author

Hauke Löffler, Jul 26 2019

Keywords

Comments

Subset of A007955.

Examples

			a(0) = 1 because 0^0 = 1, whose only divisor is 1, so the product of divisors is 1.
a(1) = 1 because 1^1 = 1, so the product of divisors is 1.
a(3) = 729 because 3^3 = 27, whose divisors are (1, 3, 9, 27), and their product is 729.
		

Crossrefs

Programs

  • Magma
    [&*Divisors(n^n): n in [0..8]]; // Marius A. Burtea, Jul 26 2019
    
  • Python
    from math import isqrt, prod
    from sympy import factorint
    def A309377(n): return (isqrt(n**n) if (c:=prod(n*e+1 for e in factorint(n).values())) & 1 else 1)*n**(n*(c//2)) # Chai Wah Wu, Jun 25 2022
  • SageMath
    [ product((1*i^i).divisors()) for i in range(10) ]
    

A309375 Unlucky palindromic primes.

Original entry on oeis.org

2, 5, 11, 101, 131, 181, 191, 313, 353, 373, 383, 757, 797, 919, 929, 10301, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18481, 19391, 19891, 19991, 30203, 30403, 30703, 30803
Offset: 1

Author

Hauke Löffler, Jul 26 2019

Keywords

Examples

			a(1) = 2 because 2 is both a palindromic prime (A002385) and an unlucky number (A050505).
		

Crossrefs

Intersection of A002385 and A050505.
Cf. A031881.

Programs

Extensions

4 wrong terms removed and more terms added by Amiram Eldar, May 14 2023