cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Tanniru

Robert Tanniru's wiki page.

Robert Tanniru has authored 4 sequences.

A232110 Fourth root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

3, 4, 27, 1913227, 9821998, 3588613885932, 7625632704605, 50859949338383, 21029300554772499, 97202454420912990, 440023525444970228, 783944985766933369, 1277151495727998611, 2283977463662240937, 72927208535053310211, 365439872472838714161, 740751647624914930138
Offset: 1

Author

Robert Tanniru, Nov 18 2013

Keywords

Examples

			1913227^(1/4) = 37.19132279207...
		

Crossrefs

Programs

  • PARI
    isok(n) = {if (ispower(n, 4), return (0)); fr = frac(n^(1/4)); while (frac(fr) < 1/10, fr *= 10); nd = length(digits(n)); fr *= 10^nd; floor(fr) == n;} \\ Michel Marcus, Nov 20 2013
    
  • PARI
    /*Sample Run Using a = [0,14], b=10, p=4 using PARI code in link */
    GetAllGIs(0,14,10,4,1)

Extensions

More terms from Bert Dobbelaere, Jun 23 2024

A232086 Third root of n contains n as a string of digits to the immediate right of the decimal point (excluding leading zeros).

Original entry on oeis.org

2, 39, 48570, 70293094, 97959170, 383263523, 7141269931, 52167799575, 54592884236, 80834974860, 3224757993012, 8391216236921, 174753523862043, 2248771925089484, 355191775894066192, 758148263300700696, 3004862096444523247, 9336508574693449683, 71580261944407825851
Offset: 1

Author

Robert Tanniru, Nov 17 2013

Keywords

Examples

			97959170^(1/3) = 460.97959170151...
		

Crossrefs

Programs

  • PARI
    /* PARI functions provided in extra link. */
    /* Sample Run Using a = [0,12], b=10, p=3 */
    GetAllGIs(0,12,10,3,1)

Extensions

a(11)-a(12) added by Robert Tanniru, Nov 20 2013
More terms from Bert Dobbelaere, Jun 23 2024

A232087 Second-order base-10 grafting integers.

Original entry on oeis.org

0, 1, 8, 77, 98, 99, 100, 764, 765, 5711, 5736, 9797, 9998, 9999, 10000, 76394, 77327, 997997, 999998, 999999, 1000000, 2798254, 7639321, 8053139, 25225733, 42808341, 57359313, 60755907, 62996069, 99979997, 99999998, 99999999, 100000000, 127016654
Offset: 1

Author

Robert Tanniru, Nov 17 2013

Keywords

Comments

Second-order base-10 grafting integers are integers that, when expressed in base 10, will appear in their own square root before or directly after the decimal point (ignoring leading 0's and including trailing 0's).
All numbers of the form 10^2n, 10^2n - 1, and 10^2n - 2, n >= 1, are terms.
All numbers of the form (10^n-3)*(10^n+1), n > 0, are terms.

Examples

			sqrt(764) = 27.64054992...
sqrt(77327) = 278.0773273749...
sqrt(1000000) = 1000.000...
		

References

  • Robert Tanniru, A short note introducing Grafting Numbers and their connection to Catalan Numbers, J. Comb. Math. and Comb. Computing, 95 (2015), 309-312.

Crossrefs

Cf. A074841 (subsequence).

Programs

  • PARI
    /* Uses PARI functions provided in link
    * Sample run uses a = [0,11], b=10, p=2, direct=FALSE */
    GetAllGIs(0,11,10,2,0)

A231914 Natural log radix 10 grafting integers.

Original entry on oeis.org

35, 4834, 9117, 9118, 29620, 116671, 238003, 238004, 1416360, 5524748, 5893348, 5893349, 16626508, 82253118, 190660024, 223091196
Offset: 1

Author

Robert Tanniru, Nov 19 2013

Keywords

Comments

Natural log radix 10 grafting integers are integers n such that, when written in radix 10, log(n) contains the digits of n before or directly after the decimal point (ignoring leading 0's and adding trailing 0's).

Examples

			log(29620) = 10.2962050878...
log(1416360) = 14.1636007582...