A262353 a(n) = ceiling((3-sqrt(5))*10^(2*n+1)).
8, 764, 76394, 7639321, 763932023, 76393202251, 7639320225003, 763932022500211, 76393202250021031, 7639320225002103036, 763932022500210303591, 76393202250021030359083, 7639320225002103035908264, 763932022500210303590826332, 76393202250021030359082633127
Offset: 0
Examples
sqrt(8) = 2.828427..., sqrt(764) = 27.6405..., sqrt(76394) = 276.39464...
References
- Matt Parker, Things to make and do in the Fourth Dimension, New York (Ferrar, Strauss and Giroux), 2014, p. 62-63.
Programs
-
Magma
[Ceiling((3-Sqrt(5))*10^(2*n+1)):n in [0..14]]; // Marius A. Burtea, Aug 08 2019
-
Maple
Digits:=2000: a:=n->ceil((3-sqrt(5))*10^(2*n+1)); seq(a(n),n=0..14);
-
Mathematica
Table[Ceiling[(3 - Sqrt@ 5) 10^(2 n + 1)], {n, 14}] (* Michael De Vlieger, Mar 24 2016 *)
-
PARI
a(n) = ceil((3-sqrt(5))*10^(2*n+1)); \\ Altug Alkan, Mar 24 2016
-
PARI
a(n) = 30*100^n - sqrtint(10^(4*n+2)*5) \\ Charles R Greathouse IV, Jan 20 2017
Formula
a(n) = ceiling((3-sqrt(5))*10^(2*n+1)).
Extensions
a(0) = 8 prepended by Robert Tanniru, Aug 06 2019
Comments