A122949 Number of ordered pairs of permutations generating a transitive group.
1, 3, 26, 426, 11064, 413640, 20946960, 1377648720, 114078384000, 11611761920640, 1425189271161600, 207609729886944000, 35419018603306060800, 6996657393055480550400, 1584616114318716544665600, 407930516160959891683584000, 118458533875304716189544448000
Offset: 1
Keywords
Examples
a(2)=3 because there are 2!*2!=4 pairs of permutations, of which only [(1,1),(1,1)] does not generate a transitive group.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..253
- John D. Dixon, Asymptotics of Generating the Symmetric and Alternating Groups, Electronic Journal of Combinatorics, vol 11(2), R56.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
Programs
-
Maple
series(log(add(n!*z^n,n=0..Order+2)),z=0):seq(coeff(%,z,j)*j!,j=0..Order);
-
Mathematica
max = 15; Drop[ CoefficientList[ Series[ Log[1 + Sum[n!*z^n, {n, 1, max}]], {z, 0, max}], z]* Range[0, max]!, 1](* Jean-François Alcover, Oct 05 2011 *)
-
PARI
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, k!*x^k)))) \\ Seiichi Manyama, Mar 01 2019
Formula
Exponential generating function is: log(1+Sum_{n>=1}n!*z^n).
a(n) = (n!)^2 - (n-1)! * Sum_{k=1..n-1} a(k) * (n-k)! / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020
Extensions
More terms from Seiichi Manyama, Mar 01 2019
Comments