A261049
Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function.
Original entry on oeis.org
1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241
Offset: 0
From _Gus Wiseman_, Oct 11 2018: (Start)
The a(1) = 1 through a(5) = 19 strict multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1,1}} {{1},{3}} {{1,2,2}}
{{1,1,1,1}} {{1},{4}}
{{1},{1,2}} {{2},{3}}
{{2},{1,1}} {{1,1,1,2}}
{{1},{1,1,1}} {{1},{1,3}}
{{1},{2,2}}
{{2},{1,2}}
{{3},{1,1}}
{{1,1,1,1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{2},{1,1}}
(End)
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k],{k,1,nmax}],{x,0,nmax}],x]
A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A098407
Number of different hierarchical orderings that can be formed from n unlabeled elements with no repetition of subhierarchies.
Original entry on oeis.org
1, 1, 2, 6, 13, 33, 78, 186, 436, 1028, 2394, 5566, 12877, 29689, 68198, 156194, 356599, 811959, 1843956, 4177436, 9442166, 21295934, 47932572, 107677140, 241443980, 540441068, 1207689636, 2694452060, 6002389882, 13351958546, 29659179804, 65794744420, 145768641091
Offset: 0
Let a pair of parentheses () indicate a subhierarchy and let square brackets [] denote a set of subhierarchies, that is, a hierarchy (also called a society). Let the ranks be ordered from left to right and separated by a colon; e.g., (2:3) is a subhierarchy with three elements ("individuals") on top and two elements on the bottom rank.
Then the hierarchical ordering for n = 4 is composed of the following sets: [(1:1),(2)]; [(1),(3)]; [(1),(1:1:1)]; [(1),(2:1)]; [(1),(1:2)]; [(4)]; [(2:2)]; [(1:3)]; [(3:1)]; [(1:1:2)]; [(1:2:1)]; [(2:1:1)]; [(1:1:1:1)]; thus a(4) = 13.
For example, the following hierarchy is not allowed: [(1),(1),(1),(1)] because of the repetition of (1).
-
main := proc(n::integer) local a, ListOfPartitions, NumberOfPartitions, APartition, APart, ASet, MultipliticityOfAPart, ndxprttn, ndxprt, Term, Produkt; with(combinat): with(ListTools): a := 0; ListOfPartitions := partition(n); NumberOfPartitions := nops(ListOfPartitions); for ndxprttn from 1 to NumberOfPartitions do APartition := ListOfPartitions[ndxprttn]; ASet := convert(APartition,set); Produkt := 1; for ndxprt from 1 to nops(ASet) do APart := op(ndxprt,ASet); MultipliticityOfAPart := Occurrences(APart, APartition); Term := 2^(APart-1); Term := binomial(Term,MultipliticityOfAPart); Produkt := Produkt * Term; # End of do-loop *** ndxprt ***. end do; a := a + Produkt; # End of do-loop *** ndxprttn ***. end do; print("n, a(n):",n,a); end proc;
PartitionList := proc (n, k) # Authors: # Herbert S. Wilf and Joanna Nordlicht, # Source: # Lecture Notes "East Side West Side,..." # University of Pennsylvania, USA, 2002. # Available from http://www.cis.upenn.edu/~wilf/lecnotes.html # Berechnet die Partitionen von n mit k Summanden. local East, West; if n < 1 or k < 1 or n < k then RETURN([]) elif n = 1 then RETURN([[1]]) else if n < 2 or k < 2 or n < k then West := [] else West := map(proc (x) options operator, arrow; [op(x), 1] end proc, PartitionList(n-1, k-1)) end if; if k <= n-k then East := map(proc(y) options operator, arrow; map(proc (x) options operator, arrow; x+1 end proc, y) end proc, PartitionList(n-k, k)) else East := [] end if; RETURN([op(West), op(East)]) end if end proc;
# second Maple program:
series(exp(add((-1)^(j-1)/j*z^j/(1-2*z^j), j=1..40)), z, 40); # Cf. A102866; Vladeta Jovovic, Feb 19 2008
# alternative Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, May 22 2018
-
terms = 32; CoefficientList[Product[(1 + x^k)^(2^(k-1)), {k, 1, terms+1}] + O[x]^(terms+1), x] // Rest (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)
nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^k*x^k/(k*(1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 08 2018 *)
A034899
Euler transform of powers of 2 [ 2,4,8,16,... ].
Original entry on oeis.org
1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
Offset: 0
From _Geoffrey Critzer_, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..3150 (first 900 terms from Alois P. Heinz)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- G. S. Venkatesh and Kurusch Ebrahimi-Fard, A Formal Power Series Approach to Multiplicative Dynamic Feedback, arXiv:2301.04949 [math.OC], 2023.
- Thomas Wieder, Additional comments on this sequence
Cf.
A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
-
series(1/product((1-x^(n))^(2^(n)),n=1..20),x=0,12); (Wieder)
# second Maple program:
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 02 2011
-
nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
-
m=50; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
A292804
Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0
A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 1, 5, 12, 22, 35, 51, 70, ...
0, 2, 16, 55, 132, 260, 452, 721, ...
0, 2, 42, 225, 729, 1805, 3777, 7042, ...
0, 3, 116, 927, 4000, 12376, 31074, 67592, ...
0, 4, 310, 3729, 21488, 83175, 250735, 636517, ...
0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
Columns k=0-10 give:
A000007,
A000009,
A102866,
A256142,
A292838,
A292839,
A292840,
A292841,
A292842,
A292843,
A292844.
-
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
A:= (n, k)-> h(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
A[n_, k_] := h[n, n, k];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
A256142
G.f.: Product_{j>=1} (1+x^j)^(3^j).
Original entry on oeis.org
1, 3, 12, 55, 225, 927, 3729, 14787, 57888, 224220, 860022, 3270744, 12343899, 46264257, 172305837, 638039136, 2350109736, 8613851832, 31428857611, 114187160631, 413222547846, 1489829356657, 5352683946903, 19167988920930, 68427472477338, 243559693397025
Offset: 0
-
nmax=30; CoefficientList[Series[Product[(1+x^k)^(3^k),{k,1,nmax}],{x,0,nmax}],x]
A208741
Triangular array read by rows. T(n,k) is the number of sets of exactly k distinct binary words with a total of n letters.
Original entry on oeis.org
2, 4, 1, 8, 8, 16, 22, 4, 32, 64, 20, 64, 156, 84, 6, 128, 384, 264, 40, 256, 888, 784, 189, 4, 512, 2048, 2152, 704, 50, 1024, 4592, 5664, 2384, 272, 1, 2048, 10240, 14368, 7328, 1232, 32, 4096, 22496, 35568, 21382, 4704, 248
Offset: 1
T(3,2) = 8 because we have: {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}; 2 word languages with total length 3.
Triangle T(n,k) begins:
2;
4, 1;
8, 8;
16, 22, 4;
32, 64, 20;
64, 156, 84, 6;
...
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(2^i, j)*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(h(n$2)):
seq(T(n), n=1..15); # Alois P. Heinz, Sep 24 2017
-
nn=12; p=Product[(1+y x^i)^(2^i), {i,1,nn}]; f[list_] := Select[list, #>0&]; Map[f, Drop[CoefficientList[Series[p[x,y], {x,0,nn}], {x,y}], 1]]//Flatten
A261050
Expansion of Product_{k>=1} (1+x^k)^(Fibonacci(k)).
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 19, 36, 67, 127, 236, 438, 811, 1496, 2750, 5046, 9224, 16827, 30630, 55623, 100803, 182342, 329205, 593326, 1067591, 1917885, 3440207, 6162004, 11021921, 19688757, 35126020, 62590629, 111398910, 198044551, 351700332, 623918086, 1105715149
Offset: 0
-
f:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(f(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^Fibonacci[k],{k,1,nmax}],{x,0,nmax}],x]
A261519
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2^k).
Original entry on oeis.org
1, 4, 16, 60, 208, 692, 2224, 6940, 21152, 63188, 185488, 536268, 1529648, 4310804, 12017264, 33171916, 90745472, 246201412, 662897232, 1772295020, 4707336848, 12426673188, 32617079280, 85152717404, 221183486496, 571784014244, 1471463190032, 3770577250716
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^k), {k, 1, nmax}], {x, 0, nmax}], x]
A306156
Inverse Weigh transform of 2^n.
Original entry on oeis.org
2, 3, 2, 6, 6, 11, 18, 36, 56, 105, 186, 346, 630, 1179, 2182, 4116, 7710, 14588, 27594, 52482, 99858, 190743, 364722, 699216, 1342176, 2581425, 4971008, 9587574, 18512790, 35792449, 69273666, 134219796, 260300986, 505294125, 981706806, 1908881548, 3714566310
Offset: 1
(1+x)^2*(1+x^2)^3*(1+x^3)^2*(1+x^4)^6* ... = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + ... .
Showing 1-10 of 19 results.
Next
Comments