cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A034691 Euler transform of powers of 2 [1,2,4,8,16,...].

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 104, 244, 585, 1373, 3233, 7533, 17547, 40591, 93711, 215379, 493735, 1127979, 2570519, 5841443, 13243599, 29953851, 67604035, 152258271, 342253980, 767895424, 1719854346, 3845443858
Offset: 0

Views

Author

Keywords

Comments

This is the number of different hierarchical orderings that can be formed from n unlabeled elements: these are divided into groups and the elements in each group are then arranged in an "unlabeled preferential arrangement" or "composition" as in A000079. - Thomas Wieder and N. J. A. Sloane, Jun 10 2003
From Gus Wiseman, Mar 03 2016: (Start)
The original Sloane-Wieder definition, "To obtain a hierarchical ordering we partition the elements into unlabeled nonempty subsets and form a composition of each subset," [arXiv:math/0307064] has two possible meanings. The first possible meaning is that we should (1) choose a set partition pi of {1...n} and (2) for each block of pi choose a composition of the number of elements. In this case the correct number of such structures would evidently be counted by A004211 which differs from a(n) for n > 2.
The other possible meaning is that after we have done (1) and (2) above we (3) "forget" the choice of pi. We will have produced a collection M of multisets of compositions. The span of M (its set of distinct elements) is correctly counted by A034691 and it seems that non-isomorphic hierarchical orderings of unlabeled sets are nothing more than multisets of compositions. This discovery is due to Wieder. (End)
The asymptotic formula in the article by N. J. A. Sloane and Thomas Wieder, "The Number of Hierarchical Orderings" (Theorem 3) is incorrect (a multiplicative factor of 1.397... is missing, see my formula below). - Vaclav Kotesovec, Sep 08 2014
Number of partitions of n into 1 sort of 1, 2 sorts of 2's, 4 sorts of 3's, ..., 2^(k-1) sorts of k's, ... . - Joerg Arndt, Sep 09 2014
Also number of normal multiset partitions of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Mar 03 2016

Examples

			The normal multiset partitions for a(4) = 18: {{1111},{1222},{1122},{1112},{1233},{1223},{1123},{1234},{1,111},{1,122},{1,112},{1,123},{11,11},{11,12},{12,12},{1,1,11},{1,1,12},{1,1,1,1}}
		

Crossrefs

Cf. A034899, A075729, A247003, A004211, A104500 (Euler transform), A290222 (Multiset transform).

Programs

  • Maple
    oo := 101: mul( 1/(1-x^j)^(2^(j-1)),j=1..oo): series(%,x,oo): t1 := seriestolist(%); A034691 := n-> t1[n+1];
    with(combstruct); SetSeqSetU := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; seq(count(SetSeqSetU,size=j),j=1..12);
    # Alternative, uses EulerTransform from A358369:
    a := EulerTransform(BinaryRecurrenceSequence(2, 0)):
    seq(a(n), n = 0..27); # Peter Luschny, Nov 17 2022
  • Mathematica
    nn = 30; b = Table[2^n, {n, 0, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}],  x] (* T. D. Noe, Nov 21 2011 *)
    Table[SeriesCoefficient[E^(Sum[x^k/(1 - 2*x^k)/k, {k, 1, n}]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2014 *)
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    allnmsp[0]={};allnmsp[1]={{{1}}};allnmsp[n_Integer]:=allnmsp[n]=Join[allnmsp[n-1],List/@allnorm[n],Join@@Function[ptn,Append[ptn,#]&/@Select[allnorm[n-Length[Join@@ptn]],OrderedQ[{Last[ptn],#}]&]]/@allnmsp[n-1]];
    Apply[SequenceForm,Select[allnmsp[4],Length[Join@@#]===4&],{2}] (* to construct the example *)
    Table[Length[Complement[allnmsp[n],allnmsp[n-1]]],{n,1,8}] (* Gus Wiseman, Mar 03 2016 *)
  • PARI
    A034691(n,l=1+O('x^(n+1)))={polcoeff(1/prod(k=1,n,(l-'x^k)^2^(k-1)),n)} \\ Michael Somos, Nov 21 2011, edited by M. F. Hasler, Jul 24 2017
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(2, 0)
    b = EulerTransform(a)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: 1 / Product_{n>=1} (1-x^n)^(2^(n-1)).
Recurrence: a(n) = (1/n) * Sum_{m=1..n} a(n-m)*c(m) where c(m) = A083413(m).
a(n) ~ c * 2^n * exp(sqrt(2*n)) / (sqrt(2*Pi) * exp(1/4) * 2^(3/4) * n^(3/4)), where c = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... (see A247003). - Vaclav Kotesovec, Sep 08 2014

A102866 Number of finite languages over a binary alphabet (set of nonempty binary words of total length n).

Original entry on oeis.org

1, 2, 5, 16, 42, 116, 310, 816, 2121, 5466, 13937, 35248, 88494, 220644, 546778, 1347344, 3302780, 8057344, 19568892, 47329264, 114025786, 273709732, 654765342, 1561257968, 3711373005, 8797021714, 20794198581, 49024480880, 115292809910, 270495295636
Offset: 0

Views

Author

Philippe Flajolet, Mar 01 2005

Keywords

Comments

Analogous to A034899 (which also enumerates multisets of words)

Examples

			a(2) = 5 because the sets are {a,b}, {aa}, {ab}, {ba}, {bb}.
a(3) = 16 because the sets are {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb}.
		

Crossrefs

Column k=2 of A292804.
Row sums of A208741 and of A360634.

Programs

  • Maple
    series(exp(add((-1)^(j-1)/j*(2*z^j)/(1-2*z^j),j=1..40)),z,40);
  • Mathematica
    nn = 20; p = Product[(1 + x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
    CoefficientList[Series[E^Sum[(-1)^(k-1)/k*(2*x^k)/(1-2*x^k), {k,1,30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 13 2014 *)

Formula

G.f.: exp(Sum((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..infinity)).
Asymptotics (Gerhold, 2011): a(n) ~ c * 2^(n-1)*exp(2*sqrt(n)-1/2) / (sqrt(Pi) * n^(3/4)), where c = exp( Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1)) ) = 0.6602994483152065685... . - Vaclav Kotesovec, Sep 13 2014
Weigh transform of A000079. - Alois P. Heinz, Jun 25 2018

A144074 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 20, 5, 0, 1, 5, 26, 64, 59, 7, 0, 1, 6, 40, 148, 276, 162, 11, 0, 1, 7, 57, 285, 843, 1137, 449, 15, 0, 1, 8, 77, 488, 2020, 4632, 4648, 1200, 22, 0, 1, 9, 100, 770, 4140, 13876, 25124, 18585, 3194, 30, 0, 1, 10, 126
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

Column k > 1 is asymptotic to k^n * exp(2*sqrt(n) - 1/2 + c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} 1/(m*(k^(m-1)-1)). - Vaclav Kotesovec, Mar 14 2015

Examples

			A(4,1) = 5: {aaaa}, {aaa,a}, {aa,aa}, {aa,a,a}, {a,a,a,a}.
A(2,2) = 7: {aa}, {a,a}, {bb}, {b,b}, {ab}, {ba}, {a,b}.
A(2,3) = 15: {aa}, {a,a}, {bb}, {b,b}, {cc}, {c,c}, {ab}, {ba}, {a,b}, {ac}, {ca}, {a,c}, {bc}, {cb}, {b,c}.
A(3,2) = 20: {aaa}, {a,aa}, {a,a,a}, {bbb}, {b,bb}, {b,b,b}, {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}, {a,a,b}, {bba}, {bab}, {abb}, {b,ba}, {b,ab}, {bb,a}, {b,b,a}.
Square array begins:
  1, 1,   1,    1,    1,     1, ...
  0, 1,   2,    3,    4,     5, ...
  0, 2,   7,   15,   26,    40, ...
  0, 3,  20,   64,  148,   285, ...
  0, 5,  59,  276,  843,  2020, ...
  0, 7, 162, 1137, 4632, 13876, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A252654.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k^j)(n); seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[ Product[1/(1-x^j)^(k^j), {j, 1, n}], {x, 0, n}]; a[0, ] = 1; a[?Positive, 0] = 0;
    Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    A[n_, k_] := etr[k^#&][n];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(k^j).
Column k is Euler transform of the powers of k.
T(n,k) = Sum_{i=0..k} C(k,i) * A257740(n,k-i). - Alois P. Heinz, May 08 2015

Extensions

Name changed by Alois P. Heinz, Sep 21 2018

A209406 Triangular array read by rows: T(n,k) is the number of multisets of exactly k nonempty binary words with a total of n letters.

Original entry on oeis.org

2, 4, 3, 8, 8, 4, 16, 26, 12, 5, 32, 64, 44, 16, 6, 64, 164, 132, 62, 20, 7, 128, 384, 376, 200, 80, 24, 8, 256, 904, 1008, 623, 268, 98, 28, 9, 512, 2048, 2632, 1792, 870, 336, 116, 32, 10, 1024, 4624, 6624, 5040, 2632, 1117, 404, 134, 36, 11
Offset: 1

Views

Author

Geoffrey Critzer, Mar 08 2012

Keywords

Comments

Equivalently, T(n,k) is the number of partitions of the integer n with two types of 1's, four types of 2's, ..., 2^i types of i's...; having exactly k summands (of any type).
Row sums = A034899.

Examples

			Triangle T(n,k) begins:
    2;
    4,    3;
    8,    8,    4;
   16,   26,   12,    5;
   32,   64,   44,   16,   6;
   64,  164,  132,   62,  20,   7;
  128,  384,  376,  200,  80,  24,   8;
  256,  904, 1008,  623, 268,  98,  28,  9;
  512, 2048, 2632, 1792, 870, 336, 116, 32, 10;
  ...
		

Crossrefs

T(2n,n) gives A359962.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(2^i+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    nn = 10; p[x_, y_] := Product[1/(1 - y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[lst, # > 0 &]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]] // Flatten

Formula

O.g.f.: Product_{i>=1} 1/(1-y*x^i)^(2^i).

A261519 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2^k).

Original entry on oeis.org

1, 4, 16, 60, 208, 692, 2224, 6940, 21152, 63188, 185488, 536268, 1529648, 4310804, 12017264, 33171916, 90745472, 246201412, 662897232, 1772295020, 4707336848, 12426673188, 32617079280, 85152717404, 221183486496, 571784014244, 1471463190032, 3770577250716
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 23 2015

Keywords

Comments

Convolution of A034899 and A102866.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(2^(2*j)-1)) = 0.2545212486386431009939814261118792033...

A297567 Number of nonisomorphic proper colorings of partition star graph using three colors.

Original entry on oeis.org

3, 6, 9, 12, 12, 24, 24, 15, 36, 30, 48, 48, 18, 48, 60, 72, 96, 96, 96, 21, 60, 90, 60, 96, 192, 108, 144, 192, 192, 192, 24, 72, 120, 120, 120, 288, 240, 216, 192, 384, 384, 288, 384, 384, 384, 27, 84, 150, 180, 105, 144, 384, 480, 324, 432, 240, 576, 480, 768, 408, 384, 768, 768, 576, 768, 768, 768, 30, 96, 180, 240, 210, 168, 480, 720, 480, 432, 864, 360, 288, 768, 960, 1152, 1536, 816, 480, 1152, 960, 1536, 1536, 768
Offset: 0

Views

Author

Marko Riedel, Dec 31 2017

Keywords

Comments

A partition star graph consists of a multiset of paths with lengths given by the elements of the partition attached to a distinguished root node. The ordering of the partitions is by traversing antichains in Young's lattice bottom to top, left to right. Isomorphism refers to the automorphisms of the star graph corresponding to the partition.

Examples

			Rows are:
   3;
   6;
   9, 12;
  12, 24, 24;
  15, 36, 30, 48, 48;
  18, 48, 60, 72, 96, 96, 96;
		

Crossrefs

Row sums give 3*A034899.
Row lengths give A000041.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0, [3], `if`(i<1, [], [seq(map(x-> x*
         binomial(2^i+j-1, j), b(n-i*j, i-1))[], j=0..n/i)])):
    T:= n-> b(n$2)[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Jan 14 2018
  • Mathematica
    b[n_, i_] := If[n == 0, {3}, If[i<1, {}, Table[Map[Function[x, x*Binomial[ 2^i + j - 1, j]], b[n - i*j, i - 1]], {j, 0, n/i}]] // Flatten];
    T[n_] :=  b[n, n];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 17 2018, after Alois P. Heinz *)

Formula

For a partition lambda we have the OCP: k Product_{p^v in lambda} C((k-1)^p+v-1, v). Here we have k=3.

A055375 Euler transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 14, 21, 14, 5, 7, 26, 48, 48, 26, 7, 11, 45, 103, 131, 103, 45, 11, 15, 75, 198, 312, 312, 198, 75, 15, 22, 120, 366, 674, 830, 674, 366, 120, 22, 30, 187, 637, 1359, 1961, 1961, 1359, 637, 187, 30, 42, 284, 1078, 2584, 4302, 5066, 4302, 2584, 1078, 284, 42
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Number of partitions of n objects, k of which are black, into parts each of which is a sequence of objects. E.g. T(3,1) = 7; the partitions are [BWW], [WBW], [WWB], [BW,W], [WB,W], [WW,B] and [B,W,W]. - Franklin T. Adams-Watters, Jan 10 2007

Examples

			Triangle begins
   1;
   1,  1;
   2,  3,   2;
   3,  7,   7,   3;
   5, 14,  21,  14,   5;
   7, 26,  48,  48,  26,   7;
  11, 45, 103, 131, 103,  45, 11;
  15, 75, 198, 312, 312, 198, 75, 15;
  ...
		

Crossrefs

Row sums give A034899.
Columns k=0-1 give: A000041, A014153(n-1) for n>=1.
T(2n,n) gives A360626.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 14 2023
  • Mathematica
    nmax = 10; pp = Product[Product[1/(1 - x^i*y^j)^Binomial[i, j], {j, 0, i}], {i, 1, nmax}]; t[n_, k_] := SeriesCoefficient[pp, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)

Formula

G.f.: Product_{i>=1} Product_{j=0..i} 1/(1 - x^i y^j)^C(i,j). - Franklin T. Adams-Watters, Jan 10 2007
Sum_{k=0..2n} (-1)^k * T(2n,k) = A034691(n). - Alois P. Heinz, Dec 05 2023

A247003 Decimal expansion of a constant related to A034691.

Original entry on oeis.org

1, 3, 9, 7, 6, 4, 9, 0, 0, 5, 0, 8, 3, 6, 5, 0, 2, 8, 5, 0, 6, 5, 0, 7, 4, 5, 9, 8, 5, 2, 6, 7, 9, 1, 1, 5, 9, 0, 0, 7, 8, 1, 1, 4, 2, 9, 4, 4, 0, 7, 2, 8, 9, 9, 6, 4, 8, 3, 8, 7, 4, 0, 4, 8, 8, 5, 4, 6, 6, 5, 7, 2, 0, 6, 6, 0, 8, 3, 3, 8, 5, 7, 8, 2, 0, 7, 5, 7, 3, 3, 2, 3, 3, 1, 0, 2, 4, 8, 2, 0, 4, 0, 0, 1, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 09 2014

Keywords

Examples

			1.397649005083650285065074598526791159007811429440728996483874...
		

Crossrefs

Programs

  • Maple
    evalf(exp(sum(1/(k*(2^k-2)), k=2..infinity)), 100)

Formula

Equals exp( Sum_{k>=2} 1/(k*(2^k-2)) ).

A290222 Multiset transform of A011782, powers of 2: 1, 2, 4, 8, 16, ...

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 8, 7, 2, 1, 0, 16, 16, 7, 2, 1, 0, 32, 42, 20, 7, 2, 1, 0, 64, 96, 54, 20, 7, 2, 1, 0, 128, 228, 140, 59, 20, 7, 2, 1, 0, 256, 512, 360, 156, 59, 20, 7, 2, 1, 0, 512, 1160, 888, 422, 162, 59, 20, 7, 2, 1, 0, 1024, 2560, 2168, 1088, 442, 162, 59, 20, 7, 2, 1
Offset: 0

Views

Author

M. F. Hasler, Jul 24 2017

Keywords

Comments

T(n,k) is the number of multisets of exactly k binary words with a total of n letters and each word beginning with 1. T(4,2) = 7: {1,100}, {1,101}, {1,110}, {1,111}, {10,10}, {10,11}, {11,11}. - Alois P. Heinz, Sep 18 2017

Examples

			The triangle starts:
1;
0    1;
0    2    1;
0    4    2    1;
0    8    7    2    1;
0   16   16    7    2   1;
0   32   42   20    7   2   1;
0   64   96   54   20   7   2  1;
0  128  228  140   59  20   7  2  1;
0  256  512  360  156  59  20  7  2  1;
0  512 1160  888  422 162  59 20  7  2  1;
0 1024 2560 2168 1088 442 162 59 20  7  2  1;
(...)
		

Crossrefs

Cf. A034691 (row sums), A000007 (column k=0), A011782 (column k=1), A178945(n-1) (column k=2).
The reverse of the n-th row converges to A034899.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(binomial(2^(i-1)+j-1, j)*
             b(n-i*j, i-1, p-j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Sep 12 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[Binomial[2^(i - 1) + j - 1, j] b[n - i j, i - 1, p - j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

G.f.: 1 / Product_{j>=1} (1-y*x^j)^(2^(j-1)). - Alois P. Heinz, Sep 18 2017

A319918 Expansion of Product_{k>=1} 1/(1 - x^k)^(2^k-1).

Original entry on oeis.org

1, 1, 4, 11, 32, 84, 230, 597, 1567, 4020, 10286, 25994, 65387, 163065, 404617, 997687, 2448220, 5977334, 14530835, 35173496, 84814982, 203760809, 487845377, 1164191563, 2769721073, 6570218773, 15542642042, 36671354125, 86306246887, 202637312099, 474684979292, 1109539437382
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 01 2018

Keywords

Comments

Convolution of A010815 and A034899.
Euler transform of A000225.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
           d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Aug 13 2021
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)*(1 - 2*x^k))).
a(n) ~ A247003^2 * exp(2*sqrt(n) - 1/2) * 2^(n-1) / (A065446 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 15 2021
Showing 1-10 of 19 results. Next