cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A034899 Euler transform of powers of 2 [ 2,4,8,16,... ].

Original entry on oeis.org

1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
Offset: 0

Views

Author

Keywords

Examples

			From _Geoffrey Critzer_, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
		

Crossrefs

Cf. A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
Column k=2 of A144074.
Row sums of A055375 and of A209406.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
  • Maple
    series(1/product((1-x^(n))^(2^(n)),n=1..20),x=0,12); (Wieder)
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 02 2011
  • Mathematica
    nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: 1/Product_{n>0} (1-x^n)^(2^n). - Thomas Wieder, Mar 06 2005
a(n) ~ c^2 * 2^(n-1) * exp(2*sqrt(n) - 1/2) / (sqrt(Pi) * n^(3/4)), where c = A247003 = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... . - Vaclav Kotesovec, Mar 09 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - 2*x^k))). - Ilya Gutkovskiy, Nov 09 2018

Extensions

More terms from Thomas Wieder, Mar 06 2005

A257740 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553
Offset: 0

Views

Author

Alois P. Heinz, May 06 2015

Keywords

Comments

Row n is the inverse binomial transform of the n-th row of array A144074, which has the Euler transform of the powers of k in column k.

Examples

			T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    3;
  0,  3,   14,    13;
  0,  5,   49,   114,     73;
  0,  7,  148,   672,   1028,     501;
  0, 11,  427,  3334,   9182,   10310,    4051;
  0, 15, 1170, 15030,  66584,  129485,  114402,   37633;
  0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A261043, A320213, A320214, A320215, A320216, A320217, A320218, A320219, A320220.
Row sums give A257741.
Main diagonal gives A000262.
T(2n,n) gives A257742.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i).

Extensions

Name changed by Alois P. Heinz, Sep 21 2018

A292804 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
  1, 1,   1,     1,      1,      1,       1,       1, ...
  0, 1,   2,     3,      4,      5,       6,       7, ...
  0, 1,   5,    12,     22,     35,      51,      70, ...
  0, 2,  16,    55,    132,    260,     452,     721, ...
  0, 2,  42,   225,    729,   1805,    3777,    7042, ...
  0, 3, 116,   927,   4000,  12376,   31074,   67592, ...
  0, 4, 310,  3729,  21488,  83175,  250735,  636517, ...
  0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A000326.
Main diagonal gives A292805.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    A:= (n, k)-> h(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
    A[n_, k_] := h[n, n, k];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^(k^j).
A(n,k) = Sum_{i=0..k} C(k,i) * A319501(n,i).

A256142 G.f.: Product_{j>=1} (1+x^j)^(3^j).

Original entry on oeis.org

1, 3, 12, 55, 225, 927, 3729, 14787, 57888, 224220, 860022, 3270744, 12343899, 46264257, 172305837, 638039136, 2350109736, 8613851832, 31428857611, 114187160631, 413222547846, 1489829356657, 5352683946903, 19167988920930, 68427472477338, 243559693397025
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 16 2015

Keywords

Comments

In general, if g.f. = Product_{j>=1} (1+x^j)^(k^j), then a(n) ~ k^n * exp(2*sqrt(n) - 1/2 - c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} (-1)^m/(m*(k^(m-1)-1)).

Crossrefs

Column k=3 of A292804.

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[(1+x^k)^(3^k),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ 3^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(3^(m-1)-1)) = 0.215985336303958581708278160877115129... .

A252654 Number of multisets of nonempty words with a total of n letters over n-ary alphabet.

Original entry on oeis.org

1, 1, 7, 64, 843, 13876, 276792, 6438797, 170938483, 5091463423, 167965714273, 6074571662270, 238837895468954, 10138497426332796, 461941179848628434, 22478593443737857695, 1163160397700757351363, 63760710281671647692688, 3690276585886363643056992
Offset: 0

Views

Author

Alois P. Heinz, Dec 19 2014

Keywords

Examples

			a(2) = 7: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}.
		

Crossrefs

Main diagonal of A144074.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
           d*k^d, d=divisors(j)) *A(n-j, k), j=1..n)/n)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*k^d, {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n];
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

Formula

a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(n^j).
a(n) = n-th term of the Euler transform of the powers of n.
a(n) ~ n^(n-3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Mar 14 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - n*x^k))). - Ilya Gutkovskiy, Nov 20 2018

Extensions

New name from comment by Alois P. Heinz, Sep 21 2018

A144067 Euler transform of powers of 3.

Original entry on oeis.org

1, 3, 15, 64, 276, 1137, 4648, 18585, 73494, 286834, 1108470, 4243128, 16111333, 60718488, 227302086, 845689753, 3128786415, 11515509603, 42179651417, 153808740042, 558532554942, 2020325112767, 7281212274165, 26151068072301, 93618849857345, 334119804933861
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

3rd column of A144074. Row sums of A275414.
Cf. A256142.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(3^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->3^j)(n): seq(a(n), n=0..40);
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[3^#]][n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
    CoefficientList[Series[Product[1/(1-x^k)^(3^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(3^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(3^j).
a(n) ~ 3^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(3^(m-1)-1)) = 0.3047484092142751906436952201501007636114175... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - 3*x^k))). - Ilya Gutkovskiy, Nov 09 2018

A144068 Euler transform of powers of 4.

Original entry on oeis.org

1, 4, 26, 148, 843, 4632, 25124, 133784, 703553, 3655340, 18800886, 95819580, 484416675, 2431094352, 12120072472, 60058765072, 295959923287, 1450980481036, 7079894939166, 34393241899772, 166390593502701, 801877654792696, 3850469199935412, 18426281811165880
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

4th column of A144074.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(4^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->4^j)(n): seq(a(n), n=0..40);
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[4^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
    CoefficientList[Series[Product[1/(1-x^k)^(4^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(4^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(4^j).
a(n) ~ 4^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(4^(m-1)-1)) = 0.1938490811676466793200632998157568919969827... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - 4*x^k))). - Ilya Gutkovskiy, Nov 09 2018

A144069 Euler transform of powers of 5.

Original entry on oeis.org

1, 5, 40, 285, 2020, 13876, 93885, 624480, 4100470, 26609290, 170940381, 1088260190, 6872684570, 43088845030, 268374618310, 1661512492031, 10229763359245, 62663268647185, 382039881168240, 2318974249801205, 14018511922088296, 84418983571948025
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

5th column of A144074.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(5^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->5^j)(n): seq(a(n), n=0..40);
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[5^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
    CoefficientList[Series[Product[1/(1-x^k)^(5^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(5^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(5^j).
a(n) ~ 5^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(5^(m-1)-1)) = 0.1412899716579209220312645657307029151422082... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - 5*x^k))). - Ilya Gutkovskiy, Nov 09 2018

A144070 Euler transform of powers of 6.

Original entry on oeis.org

1, 6, 57, 488, 4140, 34128, 276792, 2208312, 17389710, 135354340, 1042965042, 7964675400, 60337114778, 453795079932, 3390657365970, 25182770127240, 186007882964211, 1366948744701066, 9998341947058175, 72811720605519840, 528078809473488744, 3815340122599096360
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

6th column of A144074.
Cf. A000400 (powers of 6).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->6^j)(n): seq(a(n), n=0..40);
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[6^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(6^j).
a(n) ~ 6^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(6^(m-1)-1)) = 0.1108660629759785875628164141261367036457657... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(6*Sum_{k>=1} x^k/(k*(1 - 6*x^k))). - Ilya Gutkovskiy, Nov 10 2018

A144071 Euler transform of powers of 7.

Original entry on oeis.org

1, 7, 77, 770, 7609, 73178, 691971, 6438797, 59131499, 536802112, 4824305213, 42970458839, 379692684987, 3330902681785, 29030038318212, 251498296181846, 2166886679835829, 18575273870841254, 158486917413708492, 1346334588169264925, 11390431451798171304
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

7th column of A144074.
Cf. A000420 (powers of 7).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->7^j)(n): seq(a(n), n=0..40);
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(7^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(7^j).
a(n) ~ 7^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(7^(m-1)-1)) = 0.0911034105381918017167778099460538483167631... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(7*Sum_{k>=1} x^k/(k*(1 - 7*x^k))). - Ilya Gutkovskiy, Nov 10 2018
Showing 1-10 of 14 results. Next