A034899
Euler transform of powers of 2 [ 2,4,8,16,... ].
Original entry on oeis.org
1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
Offset: 0
From _Geoffrey Critzer_, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..3150 (first 900 terms from Alois P. Heinz)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- G. S. Venkatesh and Kurusch Ebrahimi-Fard, A Formal Power Series Approach to Multiplicative Dynamic Feedback, arXiv:2301.04949 [math.OC], 2023.
- Thomas Wieder, Additional comments on this sequence
Cf.
A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
-
series(1/product((1-x^(n))^(2^(n)),n=1..20),x=0,12); (Wieder)
# second Maple program:
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 02 2011
-
nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
-
m=50; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
A257740
Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553
Offset: 0
T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 3;
0, 3, 14, 13;
0, 5, 49, 114, 73;
0, 7, 148, 672, 1028, 501;
0, 11, 427, 3334, 9182, 10310, 4051;
0, 15, 1170, 15030, 66584, 129485, 114402, 37633;
0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353;
...
Columns k=0-10 give:
A000007,
A000041 (for n>0),
A261043,
A320213,
A320214,
A320215,
A320216,
A320217,
A320218,
A320219,
A320220.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)
A292804
Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0
A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 1, 5, 12, 22, 35, 51, 70, ...
0, 2, 16, 55, 132, 260, 452, 721, ...
0, 2, 42, 225, 729, 1805, 3777, 7042, ...
0, 3, 116, 927, 4000, 12376, 31074, 67592, ...
0, 4, 310, 3729, 21488, 83175, 250735, 636517, ...
0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
Columns k=0-10 give:
A000007,
A000009,
A102866,
A256142,
A292838,
A292839,
A292840,
A292841,
A292842,
A292843,
A292844.
-
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
A:= (n, k)-> h(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
A[n_, k_] := h[n, n, k];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
A256142
G.f.: Product_{j>=1} (1+x^j)^(3^j).
Original entry on oeis.org
1, 3, 12, 55, 225, 927, 3729, 14787, 57888, 224220, 860022, 3270744, 12343899, 46264257, 172305837, 638039136, 2350109736, 8613851832, 31428857611, 114187160631, 413222547846, 1489829356657, 5352683946903, 19167988920930, 68427472477338, 243559693397025
Offset: 0
-
nmax=30; CoefficientList[Series[Product[(1+x^k)^(3^k),{k,1,nmax}],{x,0,nmax}],x]
A252654
Number of multisets of nonempty words with a total of n letters over n-ary alphabet.
Original entry on oeis.org
1, 1, 7, 64, 843, 13876, 276792, 6438797, 170938483, 5091463423, 167965714273, 6074571662270, 238837895468954, 10138497426332796, 461941179848628434, 22478593443737857695, 1163160397700757351363, 63760710281671647692688, 3690276585886363643056992
Offset: 0
a(2) = 7: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=divisors(j)) *A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*k^d, {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n];
a[n_] := A[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
A144067
Euler transform of powers of 3.
Original entry on oeis.org
1, 3, 15, 64, 276, 1137, 4648, 18585, 73494, 286834, 1108470, 4243128, 16111333, 60718488, 227302086, 845689753, 3128786415, 11515509603, 42179651417, 153808740042, 558532554942, 2020325112767, 7281212274165, 26151068072301, 93618849857345, 334119804933861
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(3^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->3^j)(n): seq(a(n), n=0..40);
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[3^#]][n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CoefficientList[Series[Product[1/(1-x^k)^(3^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(3^k))) \\ G. C. Greubel, Nov 09 2018
A144068
Euler transform of powers of 4.
Original entry on oeis.org
1, 4, 26, 148, 843, 4632, 25124, 133784, 703553, 3655340, 18800886, 95819580, 484416675, 2431094352, 12120072472, 60058765072, 295959923287, 1450980481036, 7079894939166, 34393241899772, 166390593502701, 801877654792696, 3850469199935412, 18426281811165880
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(4^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->4^j)(n): seq(a(n), n=0..40);
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[4^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CoefficientList[Series[Product[1/(1-x^k)^(4^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(4^k))) \\ G. C. Greubel, Nov 09 2018
A144069
Euler transform of powers of 5.
Original entry on oeis.org
1, 5, 40, 285, 2020, 13876, 93885, 624480, 4100470, 26609290, 170940381, 1088260190, 6872684570, 43088845030, 268374618310, 1661512492031, 10229763359245, 62663268647185, 382039881168240, 2318974249801205, 14018511922088296, 84418983571948025
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(5^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->5^j)(n): seq(a(n), n=0..40);
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[5^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CoefficientList[Series[Product[1/(1-x^k)^(5^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(5^k))) \\ G. C. Greubel, Nov 09 2018
A144070
Euler transform of powers of 6.
Original entry on oeis.org
1, 6, 57, 488, 4140, 34128, 276792, 2208312, 17389710, 135354340, 1042965042, 7964675400, 60337114778, 453795079932, 3390657365970, 25182770127240, 186007882964211, 1366948744701066, 9998341947058175, 72811720605519840, 528078809473488744, 3815340122599096360
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->6^j)(n): seq(a(n), n=0..40);
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[6^#]][n]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
A144071
Euler transform of powers of 7.
Original entry on oeis.org
1, 7, 77, 770, 7609, 73178, 691971, 6438797, 59131499, 536802112, 4824305213, 42970458839, 379692684987, 3330902681785, 29030038318212, 251498296181846, 2166886679835829, 18575273870841254, 158486917413708492, 1346334588169264925, 11390431451798171304
Offset: 0
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->7^j)(n): seq(a(n), n=0..40);
-
nmax = 20; CoefficientList[Series[Product[1/(1-x^j)^(7^j), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
Showing 1-10 of 14 results.
Comments