cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A144074 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 20, 5, 0, 1, 5, 26, 64, 59, 7, 0, 1, 6, 40, 148, 276, 162, 11, 0, 1, 7, 57, 285, 843, 1137, 449, 15, 0, 1, 8, 77, 488, 2020, 4632, 4648, 1200, 22, 0, 1, 9, 100, 770, 4140, 13876, 25124, 18585, 3194, 30, 0, 1, 10, 126
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Comments

Column k > 1 is asymptotic to k^n * exp(2*sqrt(n) - 1/2 + c(k)) / (2 * sqrt(Pi) * n^(3/4)), where c(k) = Sum_{m>=2} 1/(m*(k^(m-1)-1)). - Vaclav Kotesovec, Mar 14 2015

Examples

			A(4,1) = 5: {aaaa}, {aaa,a}, {aa,aa}, {aa,a,a}, {a,a,a,a}.
A(2,2) = 7: {aa}, {a,a}, {bb}, {b,b}, {ab}, {ba}, {a,b}.
A(2,3) = 15: {aa}, {a,a}, {bb}, {b,b}, {cc}, {c,c}, {ab}, {ba}, {a,b}, {ac}, {ca}, {a,c}, {bc}, {cb}, {b,c}.
A(3,2) = 20: {aaa}, {a,aa}, {a,a,a}, {bbb}, {b,bb}, {b,b,b}, {aab}, {aba}, {baa}, {a,ab}, {a,ba}, {aa,b}, {a,a,b}, {bba}, {bab}, {abb}, {b,ba}, {b,ab}, {bb,a}, {b,b,a}.
Square array begins:
  1, 1,   1,    1,    1,     1, ...
  0, 1,   2,    3,    4,     5, ...
  0, 2,   7,   15,   26,    40, ...
  0, 3,  20,   64,  148,   285, ...
  0, 5,  59,  276,  843,  2020, ...
  0, 7, 162, 1137, 4632, 13876, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A252654.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k^j)(n); seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[ Product[1/(1-x^j)^(k^j), {j, 1, n}], {x, 0, n}]; a[0, ] = 1; a[?Positive, 0] = 0;
    Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    A[n_, k_] := etr[k^#&][n];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(k^j).
Column k is Euler transform of the powers of k.
T(n,k) = Sum_{i=0..k} C(k,i) * A257740(n,k-i). - Alois P. Heinz, May 08 2015

Extensions

Name changed by Alois P. Heinz, Sep 21 2018

A292805 Number of sets of nonempty words with a total of n letters over n-ary alphabet.

Original entry on oeis.org

1, 1, 5, 55, 729, 12376, 250735, 5904746, 158210353, 4747112731, 157545928646, 5726207734545, 226093266070501, 9632339536696943, 440262935648935344, 21482974431740480311, 1114363790702406540897, 61219233429920494716931, 3550130647865299090804375
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
		

Crossrefs

Main diagonal of A292804.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    a:= n-> h(n$3):
    seq(a(n), n=0..20);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[k^i, j], {j, 0, n/i}]]];
    a[n_] := h[n, n, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 04 2018, from Maple *)

Formula

a(n) = [x^n] Product_{j=1..n} (1+x^j)^(n^j).
a(n) ~ n^(n - 3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019

A075197 Number of partitions of n balls of n colors.

Original entry on oeis.org

1, 1, 6, 38, 305, 2777, 28784, 330262, 4152852, 56601345, 829656124, 12992213830, 216182349617, 3804599096781, 70540645679070, 1373192662197632, 27982783451615363, 595355578447896291, 13193917702518844859, 303931339674133588444, 7263814501407389465610
Offset: 0

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

For each integer partition of n, consider each part of size k to be a box containing k balls of up to n color. Order among parts and especially among parts of the same size does not matter. - Olivier Gérard, Aug 26 2016

Examples

			Illustration of first terms, ordered by number of parts, size of parts and smallest color of parts, etc.
a(1) = 1:
  {{1}}
a(2) = 6 = 3+3:
  {{1,1}},{{1,2}},{{2,2}},
  {{1},{1}},{{1},{2}},{{2},{2}}
a(3) = 38 = 10+18+10:
  {{1,1,1}},{{1,1,2}},{{1,1,3}},{{1,2,2}},{{1,2,3}},{{1,3,3}},
  {{2,2,2}},{{2,2,3}},{{2,3,3}},{{3,3,3}},
  {{1},{1,1}},{{1},{1,2}},{{1},{1,3}},{{1},{2,2}},{{1},{2,3}},{{1},{3,3}},
  {{2},{1,1}},{{2},{1,2}},{{2},{1,3}},{{2},{2,2}},{{2},{2,3}},{{2},{3,3}},
  {{3},{1,1}},{{3},{1,2}},{{3},{1,3}},{{3},{2,2}},{{3},{2,3}},{{3},{3,3}},
  {{1},{1},{1}},{{1},{1},{2}},{{1},{1},{3}},{{1},{2},{2}},{{1},{2},{3}},{{1},{3},{3}},
  {{2},{2},{2}},{{2},{2},{3}},{{2},{3},{3}},{{3},{3},{3}}
		

Crossrefs

Main diagonal of A075196.
Cf. A001700 (n balls of one color in n unlabeled boxes).
Cf. A209668 (boxes are ordered by size but not by content among a given size: order among boxes of the same size matters.),
Cf. A261783 (compositions of balls of n colors: boxes are labeled)
Cf. A252654 (lists instead of boxes : order of balls matter)
Cf. A000262 (lists instead of boxes and all n colors are used)
Cf. A255906 (the c colors used form the interval [1,c])
Cf. A255951 (the n-1 colors used form the interval [1,n-1])
Cf. A255942 (0/1 binary coloring)
Cf. A066186 (only 1 color among n = n * p(n))
Cf. A000110 (the n possible colors are used : set partitions of [n])
Cf. A005651 (the n possible colors are used and order of parts of the same size matters)
Cf. A000670 (the n possible colors are used and order of all parts matters)

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          binomial(d+k-1, k-1), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    a:= n-> A(n, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*Binomial[d+k-1, k-1], {d, Divisors[j]}]*A[n-j, k], {j, 1, n}]/n]; a[n_] := A[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(n) = [x^n] Product_{k>=1} 1 / (1 - x^k)^binomial(k+n-1,n-1). - Ilya Gutkovskiy, May 09 2021

A292873 Total number of words beginning with the first letter of an n-ary alphabet in all multisets of nonempty words with a total of n letters.

Original entry on oeis.org

0, 1, 5, 37, 415, 6051, 109476, 2348767, 58191451, 1631827927, 51029454163, 1758883278967, 66200568699170, 2699977173047181, 118561410689195358, 5574984887552288475, 279398986674750754195, 14863338415349068099348, 836304620387823727353480
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2017

Keywords

Examples

			For n=2 and alphabet {a,b} we have 7 multisets:  {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}. There is a total of 5 words beginning with the first alphabet letter, thus a(2) = 5.
		

Crossrefs

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
         (p-> p+[0, p[1]*j])(binomial(k^i+j-1, j)*h(n-i*j, i-1, k)), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, h(n$3)[2]/n):
    seq(a(n), n=0..22);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[ Function[p, p + {0, p[[1]]*j}][Binomial[k^i + j - 1, j]*h[n - i*j, i - 1, k]], {j, 0, n/i}]]];
    a[n_] := If[n == 0, 0, h[n, n, n][[2]]/n];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

A300456 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).

Original entry on oeis.org

1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1),  0,    0,    0,     0,       0,  ...
n = 1:  1,  (2),   4,    8,    14,      24,  ...
n = 2:  1,   4,  (16),  60,   208,     692,  ...
n = 3:  1,   6,   36, (200), 1038,    5160   ...
n = 4:  1,   8,   64,  472, (3264),  21608,  ...
n = 5:  1,  10,  100,  920,  7950,  (65752), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ exp(2*sqrt(2*n) - 1) * n^(n - 3/4) / (2^(3/4)*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019

A300457 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).

Original entry on oeis.org

1, -1, -3, -1, 25, 624, 9871, 170470, 3027249, 55077245, 979330606, 15079702923, 94670678245, -7958168036625, -626145997536240, -34564907982551791, -1733699815491494303, -84294315853736719077, -4067859614343931897505, -196552300464314521511610, -9519733465269825759734169
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),  -1,    0,   0,     1,  ...
n = 2:  1,  -2,  (-3),   0,   2,    12,  ...
n = 3:  1,  -3,   -6,  (-1),  9,    63,  ...
n = 4:  1,  -4,  -10,   -4, (25),  224,  ...
n = 5:  1,  -5,  -15,  -10,  55,  (624), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A300458 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).

Original entry on oeis.org

1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2018

Keywords

Examples

			The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1),  0,    0,    0,   0,     0,  ...
n = 1:  1, (-1),   0,   -1,   1,    -1,  ...
n = 2:  1,  -2,  (-1),  -4,   3,    -2,  ...
n = 3:  1,  -3,   -3, (-10),  6,    15,  ...
n = 4:  1,  -4,   -6,  -20, (11),  104,  ...
n = 5:  1,  -5,  -10,  -35,  20,  (374), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

A305207 a(n) = [x^n] exp(Sum_{k>=1} x^k/(k*(1 - n*x^k))).

Original entry on oeis.org

1, 1, 3, 13, 95, 921, 11586, 176324, 3162447, 65233120, 1521743103, 39609506223, 1138093049808, 35779807446670, 1221719353617885, 45025117385882889, 1781345658408660655, 75304205654268663567, 3387556543611248410593, 161575661076504392490150, 8144909167115962980271095
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k/(k (1 - n x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n^(k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(n^(k-1)).
Showing 1-8 of 8 results.