A292804
Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 2, 0, 1, 4, 12, 16, 2, 0, 1, 5, 22, 55, 42, 3, 0, 1, 6, 35, 132, 225, 116, 4, 0, 1, 7, 51, 260, 729, 927, 310, 5, 0, 1, 8, 70, 452, 1805, 4000, 3729, 816, 6, 0, 1, 9, 92, 721, 3777, 12376, 21488, 14787, 2121, 8, 0
Offset: 0
A(2,2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 1, 5, 12, 22, 35, 51, 70, ...
0, 2, 16, 55, 132, 260, 452, 721, ...
0, 2, 42, 225, 729, 1805, 3777, 7042, ...
0, 3, 116, 927, 4000, 12376, 31074, 67592, ...
0, 4, 310, 3729, 21488, 83175, 250735, 636517, ...
0, 5, 816, 14787, 113760, 550775, 1993176, 5904746, ...
Columns k=0-10 give:
A000007,
A000009,
A102866,
A256142,
A292838,
A292839,
A292840,
A292841,
A292842,
A292843,
A292844.
-
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
end:
A:= (n, k)-> h(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];
A[n_, k_] := h[n, n, k];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
A252654
Number of multisets of nonempty words with a total of n letters over n-ary alphabet.
Original entry on oeis.org
1, 1, 7, 64, 843, 13876, 276792, 6438797, 170938483, 5091463423, 167965714273, 6074571662270, 238837895468954, 10138497426332796, 461941179848628434, 22478593443737857695, 1163160397700757351363, 63760710281671647692688, 3690276585886363643056992
Offset: 0
a(2) = 7: {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}.
-
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=divisors(j)) *A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*k^d, {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n];
a[n_] := A[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
A292845
Total number of words beginning with the first letter of an n-ary alphabet in all sets of nonempty words with a total of n letters.
Original entry on oeis.org
0, 1, 3, 28, 325, 4976, 92869, 2038842, 51397801, 1461081781, 46192638386, 1606531631321, 60921659773609, 2500525907856718, 110403919405245712, 5216038547426332891, 262495788417549517393, 14015335940464667636300, 791161963786588958170705
Offset: 0
For n=2 and alphabet {a,b} we have 5 sets: {aa}, {ab}, {ba}, {bb}, {a,b}. There is a total of 3 words beginning with the first alphabet letter, thus a(2) = 3.
-
h:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
(p-> p+[0, p[1]*j])(binomial(k^i, j)*h(n-i*j, i-1, k)), j=0..n/i)))
end:
a= n-> `if`(n=0, 0, h(n$3)[2]/n):
seq(a(n), n=0..22);
-
h[n_, i_, k_] := h[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[ Function[p, p + {0, p[[1]]*j}][Binomial[k^i, j]*h[n - i*j, i - 1, k]], {j, 0, n/i}]]];
a[n_] := If[n == 0, 0, h[n, n, n][[2]]/n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
A300456
a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).
Original entry on oeis.org
1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (2), 4, 8, 14, 24, ...
n = 2: 1, 4, (16), 60, 208, 692, ...
n = 3: 1, 6, 36, (200), 1038, 5160 ...
n = 4: 1, 8, 64, 472, (3264), 21608, ...
n = 5: 1, 10, 100, 920, 7950, (65752), ...
-
Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
A300457
a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n^k).
Original entry on oeis.org
1, -1, -3, -1, 25, 624, 9871, 170470, 3027249, 55077245, 979330606, 15079702923, 94670678245, -7958168036625, -626145997536240, -34564907982551791, -1733699815491494303, -84294315853736719077, -4067859614343931897505, -196552300464314521511610, -9519733465269825759734169
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} (1 - x^k)^(n^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), -1, 0, 0, 1, ...
n = 2: 1, -2, (-3), 0, 2, 12, ...
n = 3: 1, -3, -6, (-1), 9, 63, ...
n = 4: 1, -4, -10, -4, (25), 224, ...
n = 5: 1, -5, -15, -10, 55, (624), ...
Cf.
A010815,
A008705,
A252654,
A252782,
A255672,
A270917,
A270922,
A281266,
A281267,
A281268,
A283333,
A292805,
A300456,
A300458.
-
Table[SeriesCoefficient[Product[(1 - x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
A300458
a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).
Original entry on oeis.org
1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), 0, -1, 1, -1, ...
n = 2: 1, -2, (-1), -4, 3, -2, ...
n = 3: 1, -3, -3, (-10), 6, 15, ...
n = 4: 1, -4, -6, -20, (11), 104, ...
n = 5: 1, -5, -10, -35, 20, (374), ...
Cf.
A081362,
A252654,
A255526,
A252782,
A255672,
A270917,
A270922,
A281266,
A281267,
A281268,
A283333,
A292805,
A300456,
A300457.
-
Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
A305209
a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - n*x^k))).
Original entry on oeis.org
1, 1, 2, 12, 86, 885, 11234, 172711, 3112262, 64422126, 1506406702, 39279802969, 1130133725736, 35566642690293, 1215444767739120, 44823725114186355, 1774344335649148230, 75042087586212893216, 3377041177800135323864, 161125608740713509132809, 8124438293071792011560256
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - n x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[Product[(1 + x^k)^(n^(k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Showing 1-7 of 7 results.