cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292805 Number of sets of nonempty words with a total of n letters over n-ary alphabet.

Original entry on oeis.org

1, 1, 5, 55, 729, 12376, 250735, 5904746, 158210353, 4747112731, 157545928646, 5726207734545, 226093266070501, 9632339536696943, 440262935648935344, 21482974431740480311, 1114363790702406540897, 61219233429920494716931, 3550130647865299090804375
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 5: {aa}, {ab}, {ba}, {bb}, {a,b}.
		

Crossrefs

Main diagonal of A292804.

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))
        end:
    a:= n-> h(n$3):
    seq(a(n), n=0..20);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[k^i, j], {j, 0, n/i}]]];
    a[n_] := h[n, n, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 04 2018, from Maple *)

Formula

a(n) = [x^n] Product_{j=1..n} (1+x^j)^(n^j).
a(n) ~ n^(n - 3/4) * exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Aug 26 2019

A292873 Total number of words beginning with the first letter of an n-ary alphabet in all multisets of nonempty words with a total of n letters.

Original entry on oeis.org

0, 1, 5, 37, 415, 6051, 109476, 2348767, 58191451, 1631827927, 51029454163, 1758883278967, 66200568699170, 2699977173047181, 118561410689195358, 5574984887552288475, 279398986674750754195, 14863338415349068099348, 836304620387823727353480
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2017

Keywords

Examples

			For n=2 and alphabet {a,b} we have 7 multisets:  {aa}, {ab}, {ba}, {bb}, {a,a}, {a,b}, {b,b}. There is a total of 5 words beginning with the first alphabet letter, thus a(2) = 5.
		

Crossrefs

Programs

  • Maple
    h:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
         (p-> p+[0, p[1]*j])(binomial(k^i+j-1, j)*h(n-i*j, i-1, k)), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, h(n$3)[2]/n):
    seq(a(n), n=0..22);
  • Mathematica
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[ Function[p, p + {0, p[[1]]*j}][Binomial[k^i + j - 1, j]*h[n - i*j, i - 1, k]], {j, 0, n/i}]]];
    a[n_] := If[n == 0, 0, h[n, n, n][[2]]/n];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

A378203 Number of palindromic n-ary words of length n that include the last letter of their respective alphabet.

Original entry on oeis.org

1, 1, 1, 5, 7, 61, 91, 1105, 1695, 26281, 40951, 771561, 1214423, 26916709, 42664987, 1087101569, 1732076671, 49868399761, 79771413871, 2560599031177, 4108933742199, 145477500542221, 234040800869107, 9059621800971105, 14605723004036255, 613627780919407801
Offset: 0

Views

Author

John Tyler Rascoe, Nov 19 2024

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (a).
a(2) = 1: (b,b).
a(3) = 5: (a,c,a), (b,c,b), (c,a,c), (c,b,c), (c,c,c).
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> n^h-`if`(n=0, 0, (n-1)^h))(ceil(n/2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 21 2024
  • Mathematica
    h[n_] := Ceiling[n/2];a[n_] := n^h[n] - (n - 1)^h[n];Join[{1},Table[a[n],{n,25}]] (* James C. McMahon, Nov 21 2024 *)
  • PARI
    h(n) = {ceil(n/2)}
    a(n) = {n^h(n)-(n-1)^h(n)}
    
  • Python
    def A378203(n): return n**(m:=n+1>>1)-(n-1)**m if n else 1 # Chai Wah Wu, Nov 21 2024

Formula

a(n) = n^h(n) - (n-1)^h(n) for n > 0, where h(n) = ceiling(n/2).
a(n) = A047969(n-1,h(n)-1) for n > 0.
Showing 1-3 of 3 results.