A034691
Euler transform of powers of 2 [1,2,4,8,16,...].
Original entry on oeis.org
1, 1, 3, 7, 18, 42, 104, 244, 585, 1373, 3233, 7533, 17547, 40591, 93711, 215379, 493735, 1127979, 2570519, 5841443, 13243599, 29953851, 67604035, 152258271, 342253980, 767895424, 1719854346, 3845443858
Offset: 0
The normal multiset partitions for a(4) = 18: {{1111},{1222},{1122},{1112},{1233},{1223},{1123},{1234},{1,111},{1,122},{1,112},{1,123},{11,11},{11,12},{12,12},{1,1,11},{1,1,12},{1,1,1,1}}
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3190 (first 300 terms from T. D. Noe)
- Vaclav Kotesovec, Asymptotics of sequence A034691.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- Thomas Wieder, An explicit formula for the n-th term.
- Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [From _Thomas Wieder_, Nov 14 2009]
-
oo := 101: mul( 1/(1-x^j)^(2^(j-1)),j=1..oo): series(%,x,oo): t1 := seriestolist(%); A034691 := n-> t1[n+1];
with(combstruct); SetSeqSetU := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; seq(count(SetSeqSetU,size=j),j=1..12);
# Alternative, uses EulerTransform from A358369:
a := EulerTransform(BinaryRecurrenceSequence(2, 0)):
seq(a(n), n = 0..27); # Peter Luschny, Nov 17 2022
-
nn = 30; b = Table[2^n, {n, 0, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Nov 21 2011 *)
Table[SeriesCoefficient[E^(Sum[x^k/(1 - 2*x^k)/k, {k, 1, n}]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2014 *)
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
allnmsp[0]={};allnmsp[1]={{{1}}};allnmsp[n_Integer]:=allnmsp[n]=Join[allnmsp[n-1],List/@allnorm[n],Join@@Function[ptn,Append[ptn,#]&/@Select[allnorm[n-Length[Join@@ptn]],OrderedQ[{Last[ptn],#}]&]]/@allnmsp[n-1]];
Apply[SequenceForm,Select[allnmsp[4],Length[Join@@#]===4&],{2}] (* to construct the example *)
Table[Length[Complement[allnmsp[n],allnmsp[n-1]]],{n,1,8}] (* Gus Wiseman, Mar 03 2016 *)
-
A034691(n,l=1+O('x^(n+1)))={polcoeff(1/prod(k=1,n,(l-'x^k)^2^(k-1)),n)} \\ Michael Somos, Nov 21 2011, edited by M. F. Hasler, Jul 24 2017
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(2, 0)
b = EulerTransform(a)
print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
A034899
Euler transform of powers of 2 [ 2,4,8,16,... ].
Original entry on oeis.org
1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
Offset: 0
From _Geoffrey Critzer_, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..3150 (first 900 terms from Alois P. Heinz)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- G. S. Venkatesh and Kurusch Ebrahimi-Fard, A Formal Power Series Approach to Multiplicative Dynamic Feedback, arXiv:2301.04949 [math.OC], 2023.
- Thomas Wieder, Additional comments on this sequence
Cf.
A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
-
series(1/product((1-x^(n))^(2^(n)),n=1..20),x=0,12); (Wieder)
# second Maple program:
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 02 2011
-
nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
-
m=50; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
A319918
Expansion of Product_{k>=1} 1/(1 - x^k)^(2^k-1).
Original entry on oeis.org
1, 1, 4, 11, 32, 84, 230, 597, 1567, 4020, 10286, 25994, 65387, 163065, 404617, 997687, 2448220, 5977334, 14530835, 35173496, 84814982, 203760809, 487845377, 1164191563, 2769721073, 6570218773, 15542642042, 36671354125, 86306246887, 202637312099, 474684979292, 1109539437382
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*(2^d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Aug 13 2021
-
nmax = 31; CoefficientList[Series[Product[1/(1 - x^k)^(2^k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[Exp[Sum[x^k/(k (1 - x^k) (1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (2^d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]
A261043
Number of multisets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
0, 0, 3, 14, 49, 148, 427, 1170, 3150, 8288, 21562, 55368, 140998, 355854, 892014, 2220856, 5497483, 13533264, 33150801, 80825768, 196218139, 474423934, 1142756063, 2742781794, 6561049181, 15645058210, 37194447065, 88174246904, 208463588035, 491585765888
Offset: 0
-
CoefficientList[Series[Product[1/(1-x^k)^(2^k), {k, 1, 30}] - 2*Product[1/(1 - x^k), {k, 1, 30}] + 1, {x, 0, 30}], x]
(* Second program: *)
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^# &]*A[n - j, k], {j, 1, n}]/n];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)
A304962
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)).
Original entry on oeis.org
1, 2, 6, 18, 50, 138, 374, 994, 2610, 6778, 17414, 44346, 112034, 280970, 700038, 1733706, 4269970, 10463154, 25518198, 61962458, 149839602, 360958306, 866405702, 2072579058, 4942074082, 11748730482, 27849974598, 65837539522, 155236876018, 365125130490, 856767548022
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
end:
a:= n-> add(g(n-j)*b(j$2), j=0..n):
seq(a(n), n=0..35); # Alois P. Heinz, May 22 2018
# Maple program to compute c(n) from a(n) or a(n) from c(n).
with(numtheory):
andrews:=proc(liste) local n,z,serie,ls,i,d,aaa;
n:=nops(liste);
aaa:=liste;
serie:=listtoseries(aaa,z,ogf):
ls:=series(ln(serie),z,n);
[seq(coeff(ls,z,d),d=1..n)];
[seq(elemmobius(%,i),i=1..n-1)]
end:
swerdna:=proc(liste) local n,i,z;
n:=nops(liste);
series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n);
[seq(coeff(%,z,i),i=0..n-1)]
end:
elemmobius:=proc(liste,d) local k,rep;
rep:=0;
for k in divisors(d) do
rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k)
od;
rep
end:
# Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known.
# For ordinary partitions the c(n) are [1,1,1,1,1, ...].
# Simon Plouffe, Jun 20 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.
Comments