cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034691 Euler transform of powers of 2 [1,2,4,8,16,...].

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 104, 244, 585, 1373, 3233, 7533, 17547, 40591, 93711, 215379, 493735, 1127979, 2570519, 5841443, 13243599, 29953851, 67604035, 152258271, 342253980, 767895424, 1719854346, 3845443858
Offset: 0

Views

Author

Keywords

Comments

This is the number of different hierarchical orderings that can be formed from n unlabeled elements: these are divided into groups and the elements in each group are then arranged in an "unlabeled preferential arrangement" or "composition" as in A000079. - Thomas Wieder and N. J. A. Sloane, Jun 10 2003
From Gus Wiseman, Mar 03 2016: (Start)
The original Sloane-Wieder definition, "To obtain a hierarchical ordering we partition the elements into unlabeled nonempty subsets and form a composition of each subset," [arXiv:math/0307064] has two possible meanings. The first possible meaning is that we should (1) choose a set partition pi of {1...n} and (2) for each block of pi choose a composition of the number of elements. In this case the correct number of such structures would evidently be counted by A004211 which differs from a(n) for n > 2.
The other possible meaning is that after we have done (1) and (2) above we (3) "forget" the choice of pi. We will have produced a collection M of multisets of compositions. The span of M (its set of distinct elements) is correctly counted by A034691 and it seems that non-isomorphic hierarchical orderings of unlabeled sets are nothing more than multisets of compositions. This discovery is due to Wieder. (End)
The asymptotic formula in the article by N. J. A. Sloane and Thomas Wieder, "The Number of Hierarchical Orderings" (Theorem 3) is incorrect (a multiplicative factor of 1.397... is missing, see my formula below). - Vaclav Kotesovec, Sep 08 2014
Number of partitions of n into 1 sort of 1, 2 sorts of 2's, 4 sorts of 3's, ..., 2^(k-1) sorts of k's, ... . - Joerg Arndt, Sep 09 2014
Also number of normal multiset partitions of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Mar 03 2016

Examples

			The normal multiset partitions for a(4) = 18: {{1111},{1222},{1122},{1112},{1233},{1223},{1123},{1234},{1,111},{1,122},{1,112},{1,123},{11,11},{11,12},{12,12},{1,1,11},{1,1,12},{1,1,1,1}}
		

Crossrefs

Cf. A034899, A075729, A247003, A004211, A104500 (Euler transform), A290222 (Multiset transform).

Programs

  • Maple
    oo := 101: mul( 1/(1-x^j)^(2^(j-1)),j=1..oo): series(%,x,oo): t1 := seriestolist(%); A034691 := n-> t1[n+1];
    with(combstruct); SetSeqSetU := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; seq(count(SetSeqSetU,size=j),j=1..12);
    # Alternative, uses EulerTransform from A358369:
    a := EulerTransform(BinaryRecurrenceSequence(2, 0)):
    seq(a(n), n = 0..27); # Peter Luschny, Nov 17 2022
  • Mathematica
    nn = 30; b = Table[2^n, {n, 0, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}],  x] (* T. D. Noe, Nov 21 2011 *)
    Table[SeriesCoefficient[E^(Sum[x^k/(1 - 2*x^k)/k, {k, 1, n}]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2014 *)
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    allnmsp[0]={};allnmsp[1]={{{1}}};allnmsp[n_Integer]:=allnmsp[n]=Join[allnmsp[n-1],List/@allnorm[n],Join@@Function[ptn,Append[ptn,#]&/@Select[allnorm[n-Length[Join@@ptn]],OrderedQ[{Last[ptn],#}]&]]/@allnmsp[n-1]];
    Apply[SequenceForm,Select[allnmsp[4],Length[Join@@#]===4&],{2}] (* to construct the example *)
    Table[Length[Complement[allnmsp[n],allnmsp[n-1]]],{n,1,8}] (* Gus Wiseman, Mar 03 2016 *)
  • PARI
    A034691(n,l=1+O('x^(n+1)))={polcoeff(1/prod(k=1,n,(l-'x^k)^2^(k-1)),n)} \\ Michael Somos, Nov 21 2011, edited by M. F. Hasler, Jul 24 2017
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(2, 0)
    b = EulerTransform(a)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: 1 / Product_{n>=1} (1-x^n)^(2^(n-1)).
Recurrence: a(n) = (1/n) * Sum_{m=1..n} a(n-m)*c(m) where c(m) = A083413(m).
a(n) ~ c * 2^n * exp(sqrt(2*n)) / (sqrt(2*Pi) * exp(1/4) * 2^(3/4) * n^(3/4)), where c = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... (see A247003). - Vaclav Kotesovec, Sep 08 2014

A292506 Number T(n,k) of multisets of exactly k nonempty binary words with a total of n letters such that no word has a majority of 0's; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 3, 1, 0, 11, 10, 3, 1, 0, 16, 23, 10, 3, 1, 0, 42, 59, 33, 10, 3, 1, 0, 64, 134, 83, 33, 10, 3, 1, 0, 163, 320, 230, 98, 33, 10, 3, 1, 0, 256, 699, 568, 270, 98, 33, 10, 3, 1, 0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1, 0, 1024, 3434, 3439, 1935, 798, 291, 98, 33, 10, 3, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2017

Keywords

Examples

			T(4,2) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   3,    1;
  0,   4,    3,    1;
  0,  11,   10,    3,   1;
  0,  16,   23,   10,   3,   1;
  0,  42,   59,   33,  10,   3,  1;
  0,  64,  134,   83,  33,  10,  3,  1;
  0, 163,  320,  230,  98,  33, 10,  3,  1;
  0, 256,  699,  568, 270,  98, 33, 10,  3, 1;
  0, 638, 1599, 1451, 738, 291, 98, 33, 10, 3, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A027306 (for n>0), A316403, A316404, A316405, A316406, A316407, A316408, A316409, A316410, A316411.
Row sums give A292548.
T(2n,n) gives A292549.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2];
    b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, x^n, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1]*x^j, {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 06 2018, from Maple *)

Formula

G.f.: Product_{j>=1} 1/(1-y*x^j)^A027306(j).

A209406 Triangular array read by rows: T(n,k) is the number of multisets of exactly k nonempty binary words with a total of n letters.

Original entry on oeis.org

2, 4, 3, 8, 8, 4, 16, 26, 12, 5, 32, 64, 44, 16, 6, 64, 164, 132, 62, 20, 7, 128, 384, 376, 200, 80, 24, 8, 256, 904, 1008, 623, 268, 98, 28, 9, 512, 2048, 2632, 1792, 870, 336, 116, 32, 10, 1024, 4624, 6624, 5040, 2632, 1117, 404, 134, 36, 11
Offset: 1

Views

Author

Geoffrey Critzer, Mar 08 2012

Keywords

Comments

Equivalently, T(n,k) is the number of partitions of the integer n with two types of 1's, four types of 2's, ..., 2^i types of i's...; having exactly k summands (of any type).
Row sums = A034899.

Examples

			Triangle T(n,k) begins:
    2;
    4,    3;
    8,    8,    4;
   16,   26,   12,    5;
   32,   64,   44,   16,   6;
   64,  164,  132,   62,  20,   7;
  128,  384,  376,  200,  80,  24,   8;
  256,  904, 1008,  623, 268,  98,  28,  9;
  512, 2048, 2632, 1792, 870, 336, 116, 32, 10;
  ...
		

Crossrefs

T(2n,n) gives A359962.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(2^i+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    nn = 10; p[x_, y_] := Product[1/(1 - y x^i)^(2^i), {i, 1, nn}]; f[list_] := Select[lst, # > 0 &]; Map[f, Drop[CoefficientList[Series[p[x, y], {x, 0, nn}], {x, y}], 1]] // Flatten

Formula

O.g.f.: Product_{i>=1} 1/(1-y*x^i)^(2^i).

A178945 Expansion of x*(1-x)^2/( (1-2*x^2)*(1-2*x)^2).

Original entry on oeis.org

1, 2, 7, 16, 42, 96, 228, 512, 1160, 2560, 5648, 12288, 26656, 57344, 122944, 262144, 557184, 1179648, 2490624, 5242880, 11010560, 23068672, 48235520, 100663296, 209717248, 436207616, 905973760, 1879048192, 3892322304, 8053063680, 16643014656
Offset: 1

Views

Author

Gary W. Adamson, Dec 30 2010

Keywords

Examples

			(1, 4, 12, 32, 80, 192, 448, 1024,...) +
..(1, 0,..2,..0,..4,...0,...8,....0...) =
..(2, 4, 14, 32, 84, 192, 456, 1024,...). Then dividing the sum by 2 we obtain:
..(1, 2, 7, 16, 42, 96, 228,...).
		

Crossrefs

Cf. A000079, A001787, A077957, column k=2 of A290222.

Programs

  • Mathematica
    CoefficientList[Series[x (1-x)^2/((1-2x^2)(1-2x)^2),{x,0,50}],x] (* or *) LinearRecurrence[{4,-2,-8,8},{0,1,2,7},50] (* Harvey P. Dale, Dec 29 2023 *)

Formula

a(2n+1) = ( A001787(2n+1)+A077957(2n))/2.
a(2n) = A001787(2n)/2.
a(n) = 2^(n-2)*n + 2^(n/2-5/2)*(1-(-1)^n).
a(n) = +4*a(n-1) -2*a(n-2) -8*a(n-3) +8*a(n-4).
G.f.: x*(S(x)^2 + S(x^2))/2 where S(x) is the g.f. for A000079.
Showing 1-4 of 4 results.