A156616
G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.
Original entry on oeis.org
1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
- Ali H. Al-Saedi, Congruences for restricted plane overpartitions modulo 4 and 8, Raman. J. 48 (2) (2019) 251
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
- Mirjana Vuletic, A generalization of MacMahon's formula, Trans. Am. Math. Soc. 361 (2009) 2789-2804.
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
-
{a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010
A260916
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(Fibonacci(k)).
Original entry on oeis.org
1, 2, 4, 10, 22, 48, 104, 220, 460, 954, 1956, 3976, 8026, 16084, 32032, 63440, 124974, 245008, 478204, 929452, 1799508, 3471396, 6673724, 12788976, 24433528, 46546738, 88432264, 167575474, 316768948, 597389576, 1124092476, 2110661644, 3955006820, 7396477224
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^Fibonacci[k], {k, 1, nmax}], {x, 0, nmax}], x]
A261520
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3^k).
Original entry on oeis.org
1, 6, 36, 200, 1038, 5160, 24776, 115632, 527172, 2355998, 10349448, 44783064, 191211512, 806737800, 3367294320, 13918479872, 57020736942, 231697484304, 934399998412, 3742041461976, 14888854356840, 58881590423856, 231542984619720, 905666813058384
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(3^k), {k, 1, nmax}], {x, 0, nmax}], x]
A300456
a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n^k).
Original entry on oeis.org
1, 2, 16, 200, 3264, 65752, 1565744, 42878432, 1324344832, 45464289482, 1715228012048, 70471268834936, 3129746696619072, 149318596196238328, 7612660420021177200, 412865831480749700928, 23725813528034949148672, 1439701175150489313314864, 91967625580609006328344400, 6167733266497532499924699672
Offset: 0
The table of coefficients of x^k in expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(n^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (2), 4, 8, 14, 24, ...
n = 2: 1, 4, (16), 60, 208, 692, ...
n = 3: 1, 6, 36, (200), 1038, 5160 ...
n = 4: 1, 8, 64, 472, (3264), 21608, ...
n = 5: 1, 10, 100, 920, 7950, (65752), ...
-
Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
A302237
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k+1)/2).
Original entry on oeis.org
1, 2, 8, 26, 76, 216, 590, 1554, 3988, 9988, 24464, 58794, 138866, 322808, 739658, 1672372, 3734848, 8245956, 18012114, 38952586, 83448832, 177194716, 373111970, 779430870, 1615995262, 3326484686, 6800794428, 13813260736, 27881653590, 55942340000, 111601021856
Offset: 0
Cf.
A000217,
A000294,
A015128,
A028377,
A156616,
A206622,
A206623,
A206624,
A260916,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555.
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
A304962
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)).
Original entry on oeis.org
1, 2, 6, 18, 50, 138, 374, 994, 2610, 6778, 17414, 44346, 112034, 280970, 700038, 1733706, 4269970, 10463154, 25518198, 61962458, 149839602, 360958306, 866405702, 2072579058, 4942074082, 11748730482, 27849974598, 65837539522, 155236876018, 365125130490, 856767548022
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
end:
a:= n-> add(g(n-j)*b(j$2), j=0..n):
seq(a(n), n=0..35); # Alois P. Heinz, May 22 2018
# Maple program to compute c(n) from a(n) or a(n) from c(n).
with(numtheory):
andrews:=proc(liste) local n,z,serie,ls,i,d,aaa;
n:=nops(liste);
aaa:=liste;
serie:=listtoseries(aaa,z,ogf):
ls:=series(ln(serie),z,n);
[seq(coeff(ls,z,d),d=1..n)];
[seq(elemmobius(%,i),i=1..n-1)]
end:
swerdna:=proc(liste) local n,i,z;
n:=nops(liste);
series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n);
[seq(coeff(%,z,i),i=0..n-1)]
end:
elemmobius:=proc(liste,d) local k,rep;
rep:=0;
for k in divisors(d) do
rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k)
od;
rep
end:
# Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known.
# For ordinary partitions the c(n) are [1,1,1,1,1, ...].
# Simon Plouffe, Jun 20 2018
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
A302238
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^prime(k).
Original entry on oeis.org
1, 4, 14, 46, 136, 382, 1022, 2626, 6530, 15784, 37218, 85842, 194146, 431358, 943038, 2031454, 4316884, 9058662, 18787730, 38542526, 78264298, 157403290, 313712482, 619919350, 1215125262, 2363570168, 4563951858, 8751621598, 16670498062, 31553539214, 59361428202
Offset: 0
Cf.
A000040,
A015128,
A030009,
A061152,
A156616,
A206622,
A206623,
A206624,
A260916,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555.
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]
A302239
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 2, 6, 16, 40, 96, 226, 512, 1140, 2488, 5336, 11270, 23494, 48356, 98438, 198338, 395846, 783136, 1536800, 2992818, 5786952, 11114950, 21213906, 40247696, 75928804, 142475644, 265985628, 494155176, 913802164, 1682338192, 3084101744, 5630853218, 10240484332, 18553818210
Offset: 0
Cf.
A000041,
A001970,
A015128,
A156616,
A206622,
A206623,
A206624,
A260916,
A261049,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555,
A302237,
A302238.
-
nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-8 of 8 results.
Comments