cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302239 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 6, 16, 40, 96, 226, 512, 1140, 2488, 5336, 11270, 23494, 48356, 98438, 198338, 395846, 783136, 1536800, 2992818, 5786952, 11114950, 21213906, 40247696, 75928804, 142475644, 265985628, 494155176, 913802164, 1682338192, 3084101744, 5630853218, 10240484332, 18553818210
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A001970 and A261049.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000041(k).
Showing 1-1 of 1 results.