A304961
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
Starting with a reversed partition gives
A323583.
Starting with a partition gives
A336134.
Partitions of partitions are
A001970.
Splittings with equal sums are
A074854.
Splittings of compositions are
A133494.
Splittings with distinct sums are
A336127.
-
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
A218482
First differences of the binomial transform of the partition numbers (A000041).
Original entry on oeis.org
1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
Cf.
A000041,
A000219,
A011782,
A055887,
A063834,
A075900,
A098407,
A101509,
A103446,
A129519,
A141199,
A218481.
-
b:= proc(n) option remember;
add(combinat[numbpart](k)*binomial(n,k), k=0..n)
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2014
-
Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
-
{a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
for(n=0,40,print1(a(n),", "))
-
{a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}
A358906
Number of finite sequences of distinct integer partitions with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0
The a(1) = 1 through a(4) = 13 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(11)) ((1)(3))
((11)(1)) ((3)(1))
((11)(2))
((1)(21))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the case of
A055887 with distinct partitions.
The case of twice-partitions is
A296122.
The version for sequences of compositions is
A358907.
The case of weakly decreasing lengths is
A358908.
The case of distinct lengths is
A358912.
The version for strict partitions is
A358913, distinct case of
A304969.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
-
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 13 2024
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]
A343363
Expansion of Product_{k>=1} (1 + x^k)^(6^(k-1)).
Original entry on oeis.org
1, 1, 6, 42, 267, 1743, 11234, 72470, 466251, 2996883, 19234836, 123315828, 789682546, 5051601010, 32282443044, 206104519572, 1314652656453, 8378283675645, 53350205335626, 339445117302366, 2158091256282273, 13710402587540469, 87040883294333382, 552205562345916570
Offset: 0
-
N:= 100: # for a(0)..a(N)
G:= mul((1+x^k)^(6^(k-1)),k=1..N):
S:= series(G,x,N+1):
seq(coeff(S,x,k),k=0..N); # Robert Israel, Apr 12 2021
-
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(6^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A358907
Number of finite sequences of distinct integer compositions with total sum n.
Original entry on oeis.org
1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0
The a(1) = 1 through a(4) = 18 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((21)) ((22))
((111)) ((31))
((1)(2)) ((112))
((2)(1)) ((121))
((1)(11)) ((211))
((11)(1)) ((1111))
((1)(3))
((3)(1))
((1)(12))
((11)(2))
((1)(21))
((12)(1))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the strict case of
A133494.
The version for sequences of partitions is
A358906.
A001970 counts multiset partitions of integer partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000009,
A000041,
A000219,
A055887,
A075900,
A296122,
A304961,
A307068,
A336342,
A358836,
A358912.
-
g:= proc(n) option remember; ceil(2^(n-1)) end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Dec 15 2022
-
comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]
A343360
Expansion of Product_{k>=1} (1 + x^k)^(3^(k-1)).
Original entry on oeis.org
1, 1, 3, 12, 39, 138, 469, 1603, 5427, 18372, 61869, 207909, 696537, 2328039, 7762266, 25826142, 85749969, 284171598, 940027872, 3104280885, 10234808334, 33692547249, 110753171784, 363561071175, 1191860487561, 3902350627434, 12761565487173, 41685086306917, 136012008938158
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(3^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..28); # Alois P. Heinz, Apr 12 2021
-
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^(3^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 3^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(3^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343361
Expansion of Product_{k>=1} (1 + x^k)^(4^(k-1)).
Original entry on oeis.org
1, 1, 4, 20, 86, 390, 1724, 7644, 33697, 148401, 651584, 2855840, 12491276, 54540636, 237733768, 1034610232, 4495832776, 19508749928, 84540638312, 365888222552, 1581630245756, 6829047398156, 29453496620000, 126898489491904, 546183557447366, 2348560270762006, 10089340886428928
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..26); # Alois P. Heinz, Apr 12 2021
-
nmax = 26; CoefficientList[Series[Product[(1 + x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(4^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343362
Expansion of Product_{k>=1} (1 + x^k)^(5^(k-1)).
Original entry on oeis.org
1, 1, 5, 30, 160, 885, 4810, 26185, 142005, 769305, 4159301, 22455876, 121057525, 651737675, 3504241650, 18818709130, 100945053055, 540885242825, 2895159035375, 15481318817450, 82704855762375, 441427664993275, 2354020475714775, 12542918682786300, 66778882780674975
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(5^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..24); # Alois P. Heinz, Apr 12 2021
-
nmax = 24; CoefficientList[Series[Product[(1 + x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(5^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343364
Expansion of Product_{k>=1} (1 + x^k)^(7^(k-1)).
Original entry on oeis.org
1, 1, 7, 56, 413, 3108, 23163, 172711, 1285256, 9556603, 70980000, 526711507, 3904946864, 28926003505, 214095348671, 1583389916081, 11701578676851, 86415267247743, 637732279701496, 4703270177738076, 34664585073280204, 255332979654402524, 1879629724498860397, 13829015594546304600
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(7^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 12 2021
-
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(7^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 7^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(7^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343365
Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)).
Original entry on oeis.org
1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2021
-
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
Showing 1-10 of 24 results.
Comments