A343360
Expansion of Product_{k>=1} (1 + x^k)^(3^(k-1)).
Original entry on oeis.org
1, 1, 3, 12, 39, 138, 469, 1603, 5427, 18372, 61869, 207909, 696537, 2328039, 7762266, 25826142, 85749969, 284171598, 940027872, 3104280885, 10234808334, 33692547249, 110753171784, 363561071175, 1191860487561, 3902350627434, 12761565487173, 41685086306917, 136012008938158
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(3^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..28); # Alois P. Heinz, Apr 12 2021
-
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^(3^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 3^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(3^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343361
Expansion of Product_{k>=1} (1 + x^k)^(4^(k-1)).
Original entry on oeis.org
1, 1, 4, 20, 86, 390, 1724, 7644, 33697, 148401, 651584, 2855840, 12491276, 54540636, 237733768, 1034610232, 4495832776, 19508749928, 84540638312, 365888222552, 1581630245756, 6829047398156, 29453496620000, 126898489491904, 546183557447366, 2348560270762006, 10089340886428928
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..26); # Alois P. Heinz, Apr 12 2021
-
nmax = 26; CoefficientList[Series[Product[(1 + x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(4^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343362
Expansion of Product_{k>=1} (1 + x^k)^(5^(k-1)).
Original entry on oeis.org
1, 1, 5, 30, 160, 885, 4810, 26185, 142005, 769305, 4159301, 22455876, 121057525, 651737675, 3504241650, 18818709130, 100945053055, 540885242825, 2895159035375, 15481318817450, 82704855762375, 441427664993275, 2354020475714775, 12542918682786300, 66778882780674975
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(5^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..24); # Alois P. Heinz, Apr 12 2021
-
nmax = 24; CoefficientList[Series[Product[(1 + x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(5^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343364
Expansion of Product_{k>=1} (1 + x^k)^(7^(k-1)).
Original entry on oeis.org
1, 1, 7, 56, 413, 3108, 23163, 172711, 1285256, 9556603, 70980000, 526711507, 3904946864, 28926003505, 214095348671, 1583389916081, 11701578676851, 86415267247743, 637732279701496, 4703270177738076, 34664585073280204, 255332979654402524, 1879629724498860397, 13829015594546304600
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(7^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 12 2021
-
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(7^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 7^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(7^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343365
Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)).
Original entry on oeis.org
1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2021
-
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343366
Expansion of Product_{k>=1} (1 + x^k)^(9^(k-1)).
Original entry on oeis.org
1, 1, 9, 90, 846, 8055, 76224, 721389, 6819192, 64422126, 608173020, 5737815756, 54100140735, 509794737636, 4801164836634, 45192001954005, 425156458320783, 3997756503852489, 37572655020653089, 352957677187938076, 3314174696310855888, 31105460092251410001, 291818245344169918725
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(9^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2021
-
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(9^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 9^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(9^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
A343331
Expansion of Product_{k>=1} (1 + x^k)^(10^(k-1)).
Original entry on oeis.org
1, 1, 10, 110, 1145, 12045, 126070, 1319570, 13798710, 144217910, 1506406702, 15726571002, 164096557935, 1711386871635, 17839701265570, 185876723016390, 1935830424374840, 20152131324766520, 209696974024339610, 2181155691766631710, 22678274833738085501, 235704268837407670401
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(10^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..21); # Alois P. Heinz, Apr 12 2021
-
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(10^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 10^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Showing 1-7 of 7 results.
Comments