cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bryan T. Ek

Bryan T. Ek's wiki page.

Bryan T. Ek has authored 14 sequences. Here are the ten most recent ones:

A302646 Values of unimodal polynomial analogous to A302612 and A302644 arising from a partition size <= 5 restriction.

Original entry on oeis.org

0, 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 183755, 683046, 2443168, 8263360, 26184420, 77558760, 215182923, 561542454, 1385168400, 3245959640, 7260395142, 15567955260, 32124894880, 64016082000, 123566718600, 231661933776, 422854091037, 753068219386
Offset: 0

Author

Bryan T. Ek, Apr 11 2018

Keywords

Comments

Consider the unimodal polynomial from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=5. See G_5(n,k) from arXiv:1711.11252. If we make the simplification k=n and take the limit as q->1^-, we obtain the listed polynomial.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=6, G_5(6,6)=q^36+q^35+2*q^34+3*q^33+5*q^32+7*q^31+11*q^30+13*q^29+18*q^28+22*q^27+28*q^26+32*q^25+39*q^24+42*q^23+48*q^22+51*q^21+55*q^20+55*q^19+58*q^18+55*q^17+55*q^16+51*q^15+48*q^14+42*q^13+39*q^12+32*q^11+28*q^10+22*q^9+18*q^8+13*q^7+11*q^6+7*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the referenced paper). Then substituting q=1 yields 924.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(1 - 13*x + 81*x^2 - 315*x^3 + 855*x^4 - 1701*x^5 + 2583*x^6 - 2961*x^7 + 2835*x^8 - 1365*x^9 + 2002*x^10) / (1 - x)^15 + O(x^40))) \\ Colin Barker, Apr 19 2018

Formula

a(n) = n*(n+3)*(n+2)*(n+1)*(n^10-50*n^9+1140*n^8-15420*n^7+136533*n^6-824370*n^5+3436190*n^4-9762880*n^3+18198936*n^2-20242080*n+10886400)/43545600.
From Colin Barker, Apr 19 2018: (Start)
G.f.: x*(1 - 13*x + 81*x^2 - 315*x^3 + 855*x^4 - 1701*x^5 + 2583*x^6 - 2961*x^7 + 2835*x^8 - 1365*x^9 + 2002*x^10) / (1 - x)^15.
a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15) for n>14.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018
0 prepended to the sequence and formulas adjusted accordingly by Colin Barker, Apr 19 2018

A302645 Values of unimodal polynomial analogous to A302612 and A302644 arising from a partition size <= 4 restriction.

Original entry on oeis.org

0, 1, 2, 6, 20, 70, 252, 924, 3432, 12705, 45430, 152438, 472836, 1352078, 3578680, 8827080, 20439984, 44745513, 93185994, 185640070, 355452020, 656846190, 1175604980, 2044130980, 3462303000, 5725877625, 9264588606, 14692562262, 22874204836, 35009334470
Offset: 0

Author

Bryan T. Ek, Apr 10 2018

Keywords

Comments

Consider the unimodal polynomial from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=4. See G_4(n,k) from arXiv:1711.11252. If we make the simplification k=n and take the limit as q->1^-, we obtain the listed polynomial.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=6, G_4(6,6)=q^36+q^35+2*q^34+3*q^33+5*q^32+7*q^31+11*q^30+13*q^29+18*q^28+22*q^27+28*q^26+32*q^25+39*q^24+42*q^23+48*q^22+51*q^21+55*q^20+55*q^19+58*q^18+55*q^17+55*q^16+51*q^15+48*q^14+42*q^13+39*q^12+32*q^11+28*q^10+22*q^9+18*q^8+13*q^7+11*q^6+7*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the referenced paper). Then substituting q=1 yields 924.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(1 - 10*x + 48*x^2 - 140*x^3 + 281*x^4 - 390*x^5 + 430*x^6 - 220*x^7 + 330*x^8) / (1 - x)^12 + O(x^40))) \\ Colin Barker, Apr 19 2018

Formula

a(n) = n*(n+2)*(n+1)*(n^8-32*n^7+462*n^6-3836*n^5+20013*n^4-66836*n^3+140804*n^2-171216*n+100800)/120960.
From Colin Barker, Apr 19 2018: (Start)
G.f.: x*(1 - 10*x + 48*x^2 - 140*x^3 + 281*x^4 - 390*x^5 + 430*x^6 - 220*x^7 + 330*x^8) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>11.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018
0 prepended to the sequence and formulas adjusted accordingly by Colin Barker, Apr 19 2018

A302644 a(n) = (n+2)*(n+1)*(n^6-12*n^5+70*n^4-210*n^3+409*n^2-378*n+360)/720.

Original entry on oeis.org

1, 2, 6, 20, 70, 252, 896, 2976, 8955, 24310, 60038, 136500, 289016, 575680, 1087920, 1964384, 3408789, 5712426, 9282070, 14674100, 22635690, 34153988, 50514256, 73368000, 104812175, 147480606, 204648822, 280353556, 379528220, 508155720, 673440032, 883998016
Offset: 0

Author

Bryan T. Ek, Apr 10 2018

Keywords

Comments

The limit as q->1^- of the unimodal polynomial [q^(4k+3)(1-q^n)( q-q^n)-q^(3k)q(1+q)( 1-q^n)( q-q^2+q^5-q^n)-q^(2k)(q^(nk)(q^(2n)(q^(9)- q^(8)-q^(7)+q^(6)+ q^(5)-q^(3)+q)-q^n(q^(10)-q^(8)+q^(6)+q^(5))+q^(10))-q^(2n)+q^n(q^(5)+q^(4)-q^(2)+1)-q^(9)+q^(7)-q^(5)-q^(4)+q^(3)+q^(2)-q)+q^k q^(nk)q^(3) ( 1+q ) ( 1-q^n ) ( q^5-q^n+q^(n+3)-q^(n+4))-q^(nk)q^6(1-q^n)( q-q^n)]/[(1-q)^2(1-q^2)^2(1-q^3)(1-q^(n-1))(1-q^n)q^(2k+1)] after making the simplification k=n. The unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=3. See G_3(n,k) from arXiv:1711.11252.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=4, G_3(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+7*q^10+7*q^9+8*q^8+7*q^7+7*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 70.
		

Crossrefs

Programs

  • PARI
    Vec((1 - 7*x + 24*x^2 - 46*x^3 + 64*x^4 - 36*x^5 + 56*x^6) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Apr 11 2018

Formula

a(n) = (n+2)*(n+1)*(n^6-12*n^5+70*n^4-210*n^3+409*n^2-378*n+360)/720.
From Colin Barker, Apr 11 2018: (Start)
G.f.: (1 - 7*x + 24*x^2 - 46*x^3 + 64*x^4 - 36*x^5 + 56*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018

A302612 a(n) = (n+1)*(n^4-4*n^3+11*n^2-8*n+12)/12.

Original entry on oeis.org

1, 2, 6, 20, 65, 186, 462, 1016, 2025, 3730, 6446, 10572, 16601, 25130, 36870, 52656, 73457, 100386, 134710, 177860, 231441, 297242, 377246, 473640, 588825, 725426, 886302, 1074556, 1293545, 1546890, 1838486, 2172512, 2553441, 2986050, 3475430, 4026996
Offset: 0

Author

Bryan T. Ek, Apr 10 2018

Keywords

Comments

The limit as q->1^- of the unimodal polynomial [q^(n*k+n+4)-q^(n*k+n+3)+q^(n*k+n+1)-q^(n*k+4)-q^((n-1)*k+n+3)+q^((n-1)*k+3)+q^(k+n+1)-q^(k+1)-q^n+q^3-q+1]/[(1-q)^2(1-q^2)(1-q^n)] after making the simplification k=n. This unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=2. See G_2(n,k) from arXiv:1711.11252.
As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

Examples

			For n=4, G_2(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+6*q^10+6*q^9+7*q^8+6*q^7+6*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 65.
		

Crossrefs

Programs

  • PARI
    Vec((1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Apr 11 2018

Formula

From Colin Barker, Apr 11 2018: (Start)
G.f.: (1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

Extensions

More terms from Colin Barker, Apr 11 2018

A301381 Number of tied close American football games: number of ways for the game to end at the score of n to n and never be separated by more than one score after each play.

Original entry on oeis.org

1, 0, 2, 2, 6, 24, 80, 208, 922, 2310, 8794, 26000, 86632, 274120, 893552, 2837882, 9254642, 29470852, 95567342, 306155908, 987994256, 3174707284, 10228816628, 32893256236, 105937526030, 340778467916, 1097194416030, 3530389210580, 11364292475448, 36571646955122, 117713073900332
Offset: 0

Author

Bryan T. Ek, Mar 20 2018

Keywords

Comments

Each play (counting untimed downs as part of the previous play) can score at most 8 points for one team.
The same as counting walks that return to the x-axis of x-length n from the origin bounded above by y=8, below by y=-8, and using the steps {[2,2],[3,3],[8,4],[7,5],[6,6],[7,7],[8,8],[2,-2],[3,-3],[8,-4],[7,-5],[6,-6],[7,-7],[8,-8]}.

Examples

			There is no way to score 1 point so a(1)=0.
The number of ways to be tied at 4-4 is 6: there must be 2 safeties scored by each team which could be ordered in 4 choose 2 ways.
a(5)=24 since there must be 1 safety and 1 field goal for each team and there are 4! ways to order them.
a(n<=8) is fairly easy to compute since the bounds do not come into effect.
		

Crossrefs

Programs

  • Maple
    taylor((16*t^29-16*t^28-56*t^27+52*t^26+100*t^25-52*t^24-136*t^23+108*t^22+66*t^21-71*t^20+134*t^19-5*t^18-320*t^17+50*t^16+78*t^15-47*t^14+60*t^13+78*t^12-158*t^11-8*t^10+31*t^8+t^7+37*t^6-t^5-10*t^4+2*t^3+6*t^2+t-1)/(32*t^33-112*t^32+24*t^31+324*t^30-300*t^29-40*t^28+52*t^27-542*t^26+784*t^25+766*t^24-1610*t^23+166*t^22+792*t^21-563*t^20+420*t^19+681*t^18-1320*t^17+190*t^16+246*t^15-87*t^14+74*t^13+304*t^12-380*t^11+6*t^10-10*t^9+25*t^8-25*t^7+85*t^6-3*t^5-22*t^4+2*t^3+8*t^2+t-1),t=0,N);

Formula

G.f.: (16*t^29-16*t^28-56*t^27+52*t^26+100*t^25-52*t^24-136*t^23+108*t^22+66*t^21-71*t^20+134*t^19-5*t^18-320*t^17+50*t^16+78*t^15-47*t^14+60*t^13+78*t^12-158*t^11-8*t^10+31*t^8+t^7+37*t^6-t^5-10*t^4+2*t^3+6*t^2+t-1)/(32*t^33-112*t^32+24*t^31+324*t^30-300*t^29-40*t^28+52*t^27-542*t^26+784*t^25+766*t^24-1610*t^23+166*t^22+792*t^21-563*t^20+420*t^19+681*t^18-1320*t^17+190*t^16+246*t^15-87*t^14+74*t^13+304*t^12-380*t^11+6*t^10-10*t^9+25*t^8-25*t^7+85*t^6-3*t^5-22*t^4+2*t^3+8*t^2+t-1).

A301380 Number of tied close American football games: number of ways for the game to have n scoring plays, never be separated by more than one score after each play, and be tied at the end.

Original entry on oeis.org

1, 0, 14, 90, 1114, 10718, 113216, 1152540, 11906042, 122269186, 1258639394, 12943924960, 133168371652, 1369830663678, 14091618522696, 144958402357534, 1491181759508514, 15339664777115086, 157798158205312580, 1623258461571800764, 16698349602838663718, 171774768145224952472
Offset: 0

Author

Bryan T. Ek, Mar 20 2018

Keywords

Comments

Each play (counting untimed downs as part of the previous play) can score at most 8 points for one team.
The same as counting walks that return to the x-axis of x-length n from the origin bounded above by y=8, below by y=-8, and using the steps {[1,8],..,[1,2],[1,-2],..,[1,-8]}.

Examples

			There are no tied games with 1 scoring play. To have tied games after 2 scoring plays requires each team to score the same number of points (7 possibilities) in each play (2 orderings): hence 14 walks.
		

Crossrefs

Programs

  • Maple
    taylor((1-4*t-45*t^2-43*t^3+98*t^4+108*t^5-24*t^6-30*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9),t=0,N);

Formula

G.f.: (1-4*t-45*t^2-43*t^3+98*t^4+108*t^5-24*t^6-30*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9).

A301379 Number of close American football games: number of ways for the game to have n scoring plays and never be separated by more than one score after each play.

Original entry on oeis.org

1, 14, 128, 1378, 13932, 144300, 1480376, 15245184, 156756896, 1612836306, 16589928984, 170664508406, 1755592926518, 18059752212038, 185779058543356, 1911097952732140, 19659326724616886, 202234169412143472, 2080368880383488938, 21400612097499844490, 220146623069820835050
Offset: 0

Author

Bryan T. Ek, Mar 19 2018

Keywords

Comments

Each play (counting untimed downs as part of the previous play) can score at most 8 points for one team.
The same as counting walks of x-length n from the origin bounded above by y=8, below by y=-8, and using the steps {[1,8],..,[1,2],[1,-2],..,[1,-8]}.

Examples

			For n=1, any step is valid. For n=2, any walk with steps of opposite direction is valid while [[1,3],[1,6]] is an example of an invalid walk.
		

Crossrefs

Programs

  • Maple
    taylor((1+10*t+13*t^2-37*t^3-40*t^4+28*t^5+26*t^6-2*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9),t=0,N);

Formula

G.f.: (1+10*t+13*t^2-37*t^3-40*t^4+28*t^5+26*t^6-2*t^7)/(1-4*t-59*t^2-77*t^3+170*t^4+234*t^5-92*t^6-142*t^7-4*t^8+6*t^9).

A300998 Number of close American football games: number of ways for the game to end after n points have been scored and never be separated by more than one score after each play.

Original entry on oeis.org

1, 0, 2, 2, 4, 8, 14, 28, 52, 78, 156, 272, 520, 832, 1616, 2734, 5224, 8756, 16798, 28192, 54118, 90644, 173876, 292816, 561574, 938748, 1802188, 3031400, 5812998, 9734470, 18684588, 31367492, 60172174, 100893834, 193598664, 324824728, 623209036, 1045201398, 2005438304, 3364638978
Offset: 0

Author

Bryan T. Ek, Mar 20 2018

Keywords

Comments

Each play (counting untimed downs as part of the previous play) can score at most 8 points for one team.
The same as counting walks of x-length n from the origin bounded above by y=8, below by y=-8, and using the steps {[2,2],[3,3],[8,4],[7,5],[6,6],[7,7],[8,8],[2,-2],[3,-3],[8,-4],[7,-5],[6,-6],[7,-7],[8,-8]}.

Examples

			There is no way to score 1 point so a(1)=0.
There are 2 ways to score 2 or 3 points.
a(n<=8) is fairly easy to compute since the bounds do not come into effect.
a(9)=78. The unallowable walks are those with 9 points all of the same magnitude: [2,2,2,3],[3,3,3],[2,7],[3,6] (and the negatives and reorderings). A total of 18 unallowable walks. The total walks of length 9 are 2*4*2 (2 and 7 points and ordering) + 2*2*2 (3 and 6) + 2*2*2 (3 and 3 and 3) + 2*2*2*2*4 (2 and 2 and 2 and 3). The total is then 16+8+8+64-18=78.
		

Crossrefs

Programs

  • Maple
    taylor(-(16*t^58-16*t^57-48*t^56+56*t^55-20*t^54-8*t^53+168*t^52-164*t^51-32*t^50+104*t^49-128*t^48+96*t^47-64*t^46+52*t^45-188*t^44+66*t^43+350*t^42-352*t^41+421*t^40-160*t^39-606*t^38+540*t^37-145*t^36-54*t^35+234*t^34-26*t^33-56*t^32-162*t^31+334*t^30-200*t^29+107*t^28-18*t^27-388*t^26+352*t^25-94*t^24-34*t^23+136*t^22-54*t^21+48*t^20-112*t^19+64*t^18-8*t^17+7*t^16+40*t^15-81*t^14+62*t^13-71*t^12-2*t^11+31*t^10-18*t^9+24*t^8+4*t^7-8*t^6+6*t^5-6*t^4+2*t^3+t^2+1)/(32*t^66-112*t^64+24*t^62+324*t^60-300*t^58-40*t^56+52*t^54-542*t^52+784*t^50+766*t^48-1610*t^46+166*t^44+792*t^42-563*t^40+420*t^38+681*t^36-1320*t^34+190*t^32+246*t^30-87*t^28+74*t^26+304*t^24-380*t^22+6*t^20-10*t^18+25*t^16-25*t^14+85*t^12-3*t^10-22*t^8+2*t^6+8*t^4+t^2-1),t=0,N);

Formula

G.f.: -(16*t^58-16*t^57-48*t^56+56*t^55-20*t^54-8*t^53+168*t^52-164*t^51-32*t^50+104*t^49-128*t^48+96*t^47-64*t^46+52*t^45-188*t^44+66*t^43+350*t^42-352*t^41+421*t^40-160*t^39-606*t^38+540*t^37-145*t^36-54*t^35+234*t^34-26*t^33-56*t^32-162*t^31+334*t^30-200*t^29+107*t^28-18*t^27-388*t^26+352*t^25-94*t^24-34*t^23+136*t^22-54*t^21+48*t^20-112*t^19+64*t^18-8*t^17+7*t^16+40*t^15-81*t^14+62*t^13-71*t^12-2*t^11+31*t^10-18*t^9+24*t^8+4*t^7-8*t^6+6*t^5-6*t^4+2*t^3+t^2+1)/(32*t^66-112*t^64+24*t^62+324*t^60-300*t^58-40*t^56+52*t^54-542*t^52+784*t^50+766*t^48-1610*t^46+166*t^44+792*t^42-563*t^40+420*t^38+681*t^36-1320*t^34+190*t^32+246*t^30-87*t^28+74*t^26+304*t^24-380*t^22+6*t^20-10*t^18+25*t^16-25*t^14+85*t^12-3*t^10-22*t^8+2*t^6+8*t^4+t^2-1).

A300390 The number of paths of length 7*n from the origin to the line y = 3*x/4 with unit east and north steps that stay below the line or touch it.

Original entry on oeis.org

1, 5, 227, 15090, 1182187, 101527596, 9247179818, 877362665128, 85783306955099, 8582893111512001, 874542924575207352, 90437361732467946334, 9467275300762187682554, 1001309098267187214993056, 106836493655355495755649544, 11485688815900189437990930096, 1242964338344397490958154292155
Offset: 0

Author

Bryan T. Ek, Mar 05 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (7*n,0) with step set [1,3], [1,-4].

Examples

			For n=1, the possible walks are EEEENNN, EEENENN, EENEENN, EEENNEN, EENENEN.
		

Programs

  • Mathematica
    m = 17; f = 0; Do[f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1 + O[t]^m, {m}]; CoefficientList[f, t] (* Jean-François Alcover, Feb 18 2019 *)

Formula

G.f. satisfies: f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/7)*binomial(7*n, 3*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/7)*binomial(7*n-7*k, 3*n-3*k)*a(k) for n >= 1. (End)

A300391 The number of paths of length 8*n from the origin to the line y = 3*x/5 with unit east and north steps that stay below the line or touch it.

Original entry on oeis.org

1, 7, 525, 58040, 7574994, 1084532963, 164734116407, 26070940600055, 4252443527211637, 709846349042619913, 120679177855928146859, 20822762876863605793639, 3637213213067542990001936, 641912742432770594132245835, 114287840570892852593437353124, 20502971288127330644273350110698
Offset: 0

Author

Bryan T. Ek, Mar 05 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (8*n,0) with step set [1,3], [1,-5].

Examples

			For n=1, the possible walks are EEEEENNN, EEEENENN, EEEENNEN, EEENEENN, EEENENEN, EENEEENN, EENEENEN.
		

Formula

G.f. f satisfies f = t^7*f^56 - 2*t^6*f^51 + t^6*f^50 - t^6*f^49 + 7*t^6*f^48 + t^5*f^46 - t^5*f^45 - 3*t^5*f^43 + 5*t^5*f^42 - 6*t^5*f^41 + 21*t^5*f^40 - 3*t^4*f^37 - 3*t^4*f^36 + 8*t^4*f^35 + 10*t^4*f^34 - 15*t^4*f^33 + 35*t^4*f^32 - 2*t^3*f^31 + 2*t^3*f^30 - 9*t^3*f^28 + 22*t^3*f^27 + 10*t^3*f^26 - 20*t^3*f^25 + 35*t^3*f^24 + 3*t^2*f^22 + 5*t^2*f^21 - 9*t^2*f^20 + 18*t^2*f^19 + 5*t^2*f^18 - 15*t^2*f^17 + t*(21*t + 1)*f^16 - t*f^15 + 3*t*f^13 - 3*t*f^12 + 5*t*f^11 + t*f^10 - 6*t*f^9 + 7*t*f^8 + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/8)*binomial(8*n, 3*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/8)*binomial(8*n-8*k, 3*n-3*k)*a(k) for n >= 1. (End)