Bryan T. Ek has authored 14 sequences. Here are the ten most recent ones:
A302646
Values of unimodal polynomial analogous to A302612 and A302644 arising from a partition size <= 5 restriction.
Original entry on oeis.org
0, 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 183755, 683046, 2443168, 8263360, 26184420, 77558760, 215182923, 561542454, 1385168400, 3245959640, 7260395142, 15567955260, 32124894880, 64016082000, 123566718600, 231661933776, 422854091037, 753068219386
Offset: 0
For n=6, G_5(6,6)=q^36+q^35+2*q^34+3*q^33+5*q^32+7*q^31+11*q^30+13*q^29+18*q^28+22*q^27+28*q^26+32*q^25+39*q^24+42*q^23+48*q^22+51*q^21+55*q^20+55*q^19+58*q^18+55*q^17+55*q^16+51*q^15+48*q^14+42*q^13+39*q^12+32*q^11+28*q^10+22*q^9+18*q^8+13*q^7+11*q^6+7*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the referenced paper). Then substituting q=1 yields 924.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bryan Ek, q-Binomials and related symmetric unimodal polynomials, arXiv:1711.11252 [math.CO], 2017-2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
0 prepended to the sequence and formulas adjusted accordingly by
Colin Barker, Apr 19 2018
A302645
Values of unimodal polynomial analogous to A302612 and A302644 arising from a partition size <= 4 restriction.
Original entry on oeis.org
0, 1, 2, 6, 20, 70, 252, 924, 3432, 12705, 45430, 152438, 472836, 1352078, 3578680, 8827080, 20439984, 44745513, 93185994, 185640070, 355452020, 656846190, 1175604980, 2044130980, 3462303000, 5725877625, 9264588606, 14692562262, 22874204836, 35009334470
Offset: 0
For n=6, G_4(6,6)=q^36+q^35+2*q^34+3*q^33+5*q^32+7*q^31+11*q^30+13*q^29+18*q^28+22*q^27+28*q^26+32*q^25+39*q^24+42*q^23+48*q^22+51*q^21+55*q^20+55*q^19+58*q^18+55*q^17+55*q^16+51*q^15+48*q^14+42*q^13+39*q^12+32*q^11+28*q^10+22*q^9+18*q^8+13*q^7+11*q^6+7*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the referenced paper). Then substituting q=1 yields 924.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bryan Ek, q-Binomials and related symmetric unimodal polynomials, arXiv:1711.11252 [math.CO], 2017-2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
0 prepended to the sequence and formulas adjusted accordingly by
Colin Barker, Apr 19 2018
A302644
a(n) = (n+2)*(n+1)*(n^6-12*n^5+70*n^4-210*n^3+409*n^2-378*n+360)/720.
Original entry on oeis.org
1, 2, 6, 20, 70, 252, 896, 2976, 8955, 24310, 60038, 136500, 289016, 575680, 1087920, 1964384, 3408789, 5712426, 9282070, 14674100, 22635690, 34153988, 50514256, 73368000, 104812175, 147480606, 204648822, 280353556, 379528220, 508155720, 673440032, 883998016
Offset: 0
For n=4, G_3(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+7*q^10+7*q^9+8*q^8+7*q^7+7*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 70.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bryan Ek, q-Binomials and related symmetric unimodal polynomials, arXiv:1711.11252 [math.CO], 2017-2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A302612
a(n) = (n+1)*(n^4-4*n^3+11*n^2-8*n+12)/12.
Original entry on oeis.org
1, 2, 6, 20, 65, 186, 462, 1016, 2025, 3730, 6446, 10572, 16601, 25130, 36870, 52656, 73457, 100386, 134710, 177860, 231441, 297242, 377246, 473640, 588825, 725426, 886302, 1074556, 1293545, 1546890, 1838486, 2172512, 2553441, 2986050, 3475430, 4026996
Offset: 0
For n=4, G_2(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+6*q^10+6*q^9+7*q^8+6*q^7+6*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 65.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Bryan Ek, q-Binomials and related symmetric unimodal polynomials, arXiv:1711.11252 [math.CO], 2017-2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
A301381
Number of tied close American football games: number of ways for the game to end at the score of n to n and never be separated by more than one score after each play.
Original entry on oeis.org
1, 0, 2, 2, 6, 24, 80, 208, 922, 2310, 8794, 26000, 86632, 274120, 893552, 2837882, 9254642, 29470852, 95567342, 306155908, 987994256, 3174707284, 10228816628, 32893256236, 105937526030, 340778467916, 1097194416030, 3530389210580, 11364292475448, 36571646955122, 117713073900332
Offset: 0
There is no way to score 1 point so a(1)=0.
The number of ways to be tied at 4-4 is 6: there must be 2 safeties scored by each team which could be ordered in 4 choose 2 ways.
a(5)=24 since there must be 1 safety and 1 field goal for each team and there are 4! ways to order them.
a(n<=8) is fairly easy to compute since the bounds do not come into effect.
-
taylor((16*t^29-16*t^28-56*t^27+52*t^26+100*t^25-52*t^24-136*t^23+108*t^22+66*t^21-71*t^20+134*t^19-5*t^18-320*t^17+50*t^16+78*t^15-47*t^14+60*t^13+78*t^12-158*t^11-8*t^10+31*t^8+t^7+37*t^6-t^5-10*t^4+2*t^3+6*t^2+t-1)/(32*t^33-112*t^32+24*t^31+324*t^30-300*t^29-40*t^28+52*t^27-542*t^26+784*t^25+766*t^24-1610*t^23+166*t^22+792*t^21-563*t^20+420*t^19+681*t^18-1320*t^17+190*t^16+246*t^15-87*t^14+74*t^13+304*t^12-380*t^11+6*t^10-10*t^9+25*t^8-25*t^7+85*t^6-3*t^5-22*t^4+2*t^3+8*t^2+t-1),t=0,N);
A301380
Number of tied close American football games: number of ways for the game to have n scoring plays, never be separated by more than one score after each play, and be tied at the end.
Original entry on oeis.org
1, 0, 14, 90, 1114, 10718, 113216, 1152540, 11906042, 122269186, 1258639394, 12943924960, 133168371652, 1369830663678, 14091618522696, 144958402357534, 1491181759508514, 15339664777115086, 157798158205312580, 1623258461571800764, 16698349602838663718, 171774768145224952472
Offset: 0
There are no tied games with 1 scoring play. To have tied games after 2 scoring plays requires each team to score the same number of points (7 possibilities) in each play (2 orderings): hence 14 walks.
A301379
Number of close American football games: number of ways for the game to have n scoring plays and never be separated by more than one score after each play.
Original entry on oeis.org
1, 14, 128, 1378, 13932, 144300, 1480376, 15245184, 156756896, 1612836306, 16589928984, 170664508406, 1755592926518, 18059752212038, 185779058543356, 1911097952732140, 19659326724616886, 202234169412143472, 2080368880383488938, 21400612097499844490, 220146623069820835050
Offset: 0
For n=1, any step is valid. For n=2, any walk with steps of opposite direction is valid while [[1,3],[1,6]] is an example of an invalid walk.
A300998
Number of close American football games: number of ways for the game to end after n points have been scored and never be separated by more than one score after each play.
Original entry on oeis.org
1, 0, 2, 2, 4, 8, 14, 28, 52, 78, 156, 272, 520, 832, 1616, 2734, 5224, 8756, 16798, 28192, 54118, 90644, 173876, 292816, 561574, 938748, 1802188, 3031400, 5812998, 9734470, 18684588, 31367492, 60172174, 100893834, 193598664, 324824728, 623209036, 1045201398, 2005438304, 3364638978
Offset: 0
There is no way to score 1 point so a(1)=0.
There are 2 ways to score 2 or 3 points.
a(n<=8) is fairly easy to compute since the bounds do not come into effect.
a(9)=78. The unallowable walks are those with 9 points all of the same magnitude: [2,2,2,3],[3,3,3],[2,7],[3,6] (and the negatives and reorderings). A total of 18 unallowable walks. The total walks of length 9 are 2*4*2 (2 and 7 points and ordering) + 2*2*2 (3 and 6) + 2*2*2 (3 and 3 and 3) + 2*2*2*2*4 (2 and 2 and 2 and 3). The total is then 16+8+8+64-18=78.
-
taylor(-(16*t^58-16*t^57-48*t^56+56*t^55-20*t^54-8*t^53+168*t^52-164*t^51-32*t^50+104*t^49-128*t^48+96*t^47-64*t^46+52*t^45-188*t^44+66*t^43+350*t^42-352*t^41+421*t^40-160*t^39-606*t^38+540*t^37-145*t^36-54*t^35+234*t^34-26*t^33-56*t^32-162*t^31+334*t^30-200*t^29+107*t^28-18*t^27-388*t^26+352*t^25-94*t^24-34*t^23+136*t^22-54*t^21+48*t^20-112*t^19+64*t^18-8*t^17+7*t^16+40*t^15-81*t^14+62*t^13-71*t^12-2*t^11+31*t^10-18*t^9+24*t^8+4*t^7-8*t^6+6*t^5-6*t^4+2*t^3+t^2+1)/(32*t^66-112*t^64+24*t^62+324*t^60-300*t^58-40*t^56+52*t^54-542*t^52+784*t^50+766*t^48-1610*t^46+166*t^44+792*t^42-563*t^40+420*t^38+681*t^36-1320*t^34+190*t^32+246*t^30-87*t^28+74*t^26+304*t^24-380*t^22+6*t^20-10*t^18+25*t^16-25*t^14+85*t^12-3*t^10-22*t^8+2*t^6+8*t^4+t^2-1),t=0,N);
A300390
The number of paths of length 7*n from the origin to the line y = 3*x/4 with unit east and north steps that stay below the line or touch it.
Original entry on oeis.org
1, 5, 227, 15090, 1182187, 101527596, 9247179818, 877362665128, 85783306955099, 8582893111512001, 874542924575207352, 90437361732467946334, 9467275300762187682554, 1001309098267187214993056, 106836493655355495755649544, 11485688815900189437990930096, 1242964338344397490958154292155
Offset: 0
For n=1, the possible walks are EEEENNN, EEENENN, EENEENN, EEENNEN, EENENEN.
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
-
m = 17; f = 0; Do[f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1 + O[t]^m, {m}]; CoefficientList[f, t] (* Jean-François Alcover, Feb 18 2019 *)
A300391
The number of paths of length 8*n from the origin to the line y = 3*x/5 with unit east and north steps that stay below the line or touch it.
Original entry on oeis.org
1, 7, 525, 58040, 7574994, 1084532963, 164734116407, 26070940600055, 4252443527211637, 709846349042619913, 120679177855928146859, 20822762876863605793639, 3637213213067542990001936, 641912742432770594132245835, 114287840570892852593437353124, 20502971288127330644273350110698
Offset: 0
For n=1, the possible walks are EEEEENNN, EEEENENN, EEEENNEN, EEENEENN, EEENENEN, EENEEENN, EENEENEN.
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
Comments