cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158876 Expansion of e.g.f.: exp( Sum_{n>=1} (n-1)! * x^n ).

Original entry on oeis.org

1, 1, 3, 19, 217, 4041, 113611, 4532683, 244208049, 17085010897, 1504881245971, 162835665686211, 21219897528855433, 3276502399914104089, 591351260856215820507, 123322423833602768272891, 29423834155886520870184801, 7963056392690313008566254753
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 217*x^4/4! +...
log(A(x)) = x + x^2 + 2!*x^3 + 3!*x^4 +...+ (n-1)!*x^n +....
		

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( Exp( &+[Factorial(j-1)*x^j: j in [1..m+2]] ) ))); // G. C. Greubel, Mar 04 2020
    
  • Maple
    m:=20; S:=series( exp(add((j-1)!*x^j, j=1..m+2)), x, m+1): seq(j!*coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 04 2020
  • Mathematica
    With[{m = 20}, CoefficientList[Series[Exp[Sum[(j-1)!*x^j, {j, m+2}]], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    {a(n)=if(n==0,1,(n-1)!*sum(k=1,n,k!*a(n-k)/(n-k)!))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(exp(sum(k=1,n,(k-1)!*x^k)+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))
    
  • Sage
    m=20
    def A158876_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(sum(factorial(j-1)*x^j for j in (1..m+2))) ).list()
    a=A158876_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Mar 04 2020

Formula

a(n) = (n-1)! * Sum_{k=1..n} k! * a(n-k) / (n-k)! for n>0 with a(0)=1.
E.g.f. A(x) satisfies:
(1) A'(x)/A(x) = Sum_{k>=0} (n+1)! * x^n.
(2) A(x) = exp(x + x^2 * A'(x)/A(x)).
Let F(x) = Sum_{n>=0} n! * x^n, then
(3) [x^n] A(x)^n * (2 - F(x)) = 0 for n > 0,
(4) [x^n] A(x) * (n + 1 - F(x)) = 0 for n > 0. - Paul D. Hanna, May 26 2018
a(n) ~ n! * (n-1)!. - Vaclav Kotesovec, Aug 01 2017

A220754 Number of ordered triples (a,b,c) of elements of the symmetric group S_n such that the triple a,b,c generates a transitive group.

Original entry on oeis.org

1, 7, 194, 12858, 1647384, 361351560, 125116670160, 64439768489040, 47159227114392960, 47285264408385951360, 63057420721939066617600, 109118766834521171299756800, 239996135160204867851157273600, 659114500480471292127627441484800
Offset: 1

Views

Author

Geoffrey Critzer, Apr 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn=14; b=Sum[n!^3 x^n/n!,{n,0,nn}]; Drop[Range[0,nn]!CoefficientList[Series[Log[b],{x,0,nn}],x],1]
  • PARI
    N = 66;  x = 'x + O('x^N);
    egf = log(sum(n=0, N, n!^2*x^n));
    gf = serlaplace(egf);
    v = Vec(gf)
    /* Joerg Arndt, Apr 14 2013 */

Formula

E.g.f.: log(Sum_{n>=0} n!^2*x^n).
a(n) = (n!)^3 - (n-1)! * Sum_{k=1..n-1} a(k) * ((n-k)!)^2 / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020

A306628 Expansion of e.g.f. log(Sum_{k>=0} (k*x)^k).

Original entry on oeis.org

1, 7, 140, 5394, 336024, 30663840, 3846629520, 634415055120, 133073632016640, 34596321663980160, 10919217470376902400, 4113179201266142515200, 1822997615295693513600000, 939158618068666181592806400, 556530141861219809204393472000
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[Log[1 + Sum[(k*x)^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Mar 02 2019 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, (k*x)^k))))

Formula

a(n) ~ n! * n^n. - Vaclav Kotesovec, Mar 02 2019

A266910 Number of size 2 subsets of S_n that generate a transitive subgroup of S_n.

Original entry on oeis.org

1, 12, 210, 5520, 206760, 10473120, 688821840, 57039171840, 5805880778880, 712594633766400, 103804864923513600, 17709509301413529600, 3498328696524626764800, 792308057159314683187200, 203965258080479292004608000, 59229266937652347633377280000, 19270409372174365076286590976000
Offset: 2

Views

Author

Geoffrey Critzer, Jan 05 2016

Keywords

Examples

			a(3) = 12 because there are 15 = binomial(3!,2)  size 2 subsets of S_3 and every such subset generates a transitive subgroup of S_3 except: {(),(12)}, {(),(13)}, {(),(23)}.
		

Crossrefs

Cf. A122949.

Programs

  • Mathematica
    nn = 20; a = Sum[n!^2 x^n/n!, {n, 0, nn}]; Drop[(Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], x] - Table[(n - 1)!, {n, 0, nn}])/2, 2]

Formula

a(n) = (A122949(n) - (n - 1)!)/2.

A327547 Triangular array read by rows: T(n,k) is the number of ordered pairs of n-permutations that generate a group with exactly k orbits, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 26, 9, 1, 0, 426, 131, 18, 1, 0, 11064, 2910, 395, 30, 1, 0, 413640, 92314, 11475, 925, 45, 1, 0, 20946960, 3980172, 438424, 34125, 1855, 63, 1, 0, 1377648720, 224782284, 21632436, 1550689, 84840, 3346, 84, 1, 0, 114078384000, 16158371184, 1353378284, 87036012, 4533249, 185976, 5586, 108, 1
Offset: 0

Views

Author

Geoffrey Critzer, Sep 16 2019

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,     1;
  0,     26,     9,    1;
  0,    426,   131,   18,    1;
  0,  11064,  2910,  395,   30,  1;
  0, 413640, 92314, 11475, 925, 45, 1;
T(3,2) = 9 because we have 3 ordered pairs (e,<(1,2)>), (<(1,2)>,e), (<(1,2)>,<(1,2)>) for each of the 3 transpositions in S_3.
		

Crossrefs

Cf. A122949 (column 1), A001044 (row sums), A220754.

Programs

  • Mathematica
    nn = 7; Range[0, nn]! CoefficientList[Series[Exp[u Log[Sum[n!^2 z^n/n!, {n, 0, nn}]]], {z, 0, nn}], {z, u}] // Grid

Formula

E.g.f.: exp(y*log(Sum_{n>=0} n! * x^n)).
Showing 1-5 of 5 results.