cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267575 Number of size 3 subsets of S_n that generate a transitive group.

Original entry on oeis.org

20, 1932, 269040, 60018480, 20842305120, 10739272592160, 7859814146553600, 7880871595516819200, 10509569407728543398400, 18186461035281996953126400, 39999355842324635340366182400, 109852416743246886658078908979200, 371006429409575280027759776435712000
Offset: 3

Views

Author

Geoffrey Critzer, Jan 17 2016

Keywords

Programs

  • Mathematica
    nn = 15; b = Sum[n!^3 x^n/n!, {n, 0, nn}]; a = Sum[n!^2 x^n/n!, {n, 0,
       nn}]; c = (Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], x] - Table[(n - 1)!, {n, 0, nn}])/ 2; Drop[((Range[0,nn]!CoefficientList[Series[Log[b], {x, 0, nn}], x]) - 6 c - Table[(n - 1)!, {n, 0, nn}])/6, 3]

Formula

a(n) = (A220754(n) - 6*A266910 - (n-1)!)/6.

A327547 Triangular array read by rows: T(n,k) is the number of ordered pairs of n-permutations that generate a group with exactly k orbits, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 26, 9, 1, 0, 426, 131, 18, 1, 0, 11064, 2910, 395, 30, 1, 0, 413640, 92314, 11475, 925, 45, 1, 0, 20946960, 3980172, 438424, 34125, 1855, 63, 1, 0, 1377648720, 224782284, 21632436, 1550689, 84840, 3346, 84, 1, 0, 114078384000, 16158371184, 1353378284, 87036012, 4533249, 185976, 5586, 108, 1
Offset: 0

Views

Author

Geoffrey Critzer, Sep 16 2019

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,     1;
  0,     26,     9,    1;
  0,    426,   131,   18,    1;
  0,  11064,  2910,  395,   30,  1;
  0, 413640, 92314, 11475, 925, 45, 1;
T(3,2) = 9 because we have 3 ordered pairs (e,<(1,2)>), (<(1,2)>,e), (<(1,2)>,<(1,2)>) for each of the 3 transpositions in S_3.
		

Crossrefs

Cf. A122949 (column 1), A001044 (row sums), A220754.

Programs

  • Mathematica
    nn = 7; Range[0, nn]! CoefficientList[Series[Exp[u Log[Sum[n!^2 z^n/n!, {n, 0, nn}]]], {z, 0, nn}], {z, u}] // Grid

Formula

E.g.f.: exp(y*log(Sum_{n>=0} n! * x^n)).
Showing 1-2 of 2 results.