cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A381773 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 15, 157, 1913, 25427, 357546, 5229980, 78765793, 1213181593, 19021747383, 302595975502, 4871780511910, 79232327379407, 1299767617080662, 21481625997258747, 357350097625089497, 5978708468143961925, 100537111802285439375, 1698302173359384479307
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^3)/x)^(1/3))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * C(x*A(x)^3).
a(n) = Sum_{k=0..n} binomial(3*n+2*k+1,k) * binomial(3*n+1,n-k)/(3*n+2*k+1).

A381772 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * C(x*A(x)^2).
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+1,n-k)/(2*n+2*k+1).

A381774 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 19, 255, 3995, 68344, 1237526, 23316295, 452385355, 8977539540, 181374792040, 3718002102747, 77138798530854, 1616741658725930, 34179703551312530, 728019711835819493, 15608122038151106507, 336551042553481867640, 7293934071668996347055
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^4)/x)^(1/4))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^4) * C(x*A(x)^4).
a(n) = Sum_{k=0..n} binomial(4*n+2*k+1,k) * binomial(4*n+1,n-k)/(4*n+2*k+1).

A054728 a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
Offset: 0

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

a(150) = -1, a(n) > 0 for 0<=n<=149.
a(9999988) = 119999861 is the largest value in the first 1+10^7 terms of the sequence. - Gheorghe Coserea, May 24 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
    seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      return(inv);
    };
    seq(51)  \\ Gheorghe Coserea, May 21 2016

Formula

A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016

A118343 Triangle, read by rows, where diagonals are successive self-convolutions of A108447.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A108447 equals the central terms of pendular triangle A118340 and the diagonals of this triangle form the semi-diagonals of the triangle A118340. Row sums equal A054727, the number of forests of rooted trees with n nodes on a circle without crossing edges.

Examples

			Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  4,   0;
  1, 3,  9,  20,    0;
  1, 4, 15,  48,  113,    0;
  1, 5, 22,  85,  282,  688,     0;
  1, 6, 30, 132,  519, 1762,  4404,      0;
  1, 7, 39, 190,  837, 3330, 11488,  29219,      0;
  1, 8, 49, 260, 1250, 5516, 22135,  77270, 199140,       0;
  1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
		

Crossrefs

Cf. A054727 (row sums), A108447, A118340.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021

A303730 Number of noncrossing path sets on n nodes with each path having at least two nodes.

Original entry on oeis.org

1, 0, 1, 3, 10, 35, 128, 483, 1866, 7344, 29342, 118701, 485249, 2001467, 8319019, 34810084, 146519286, 619939204, 2635257950, 11248889770, 48198305528, 207222648334, 893704746508, 3865335575201, 16761606193951, 72860178774410, 317418310631983, 1385703968792040
Offset: 0

Views

Author

Andrew Howroyd, Apr 29 2018

Keywords

Comments

Paths are constructed using noncrossing line segments between the vertices of a regular n-gon. Isolated vertices are not allowed.
A noncrossing path set is a noncrossing forest (A054727) where each tree is restricted to being a path.

Examples

			Case n=3: There are 3 possibilities:
.
     o       o       o
    /         \     / \
   o---o   o---o   o   o
.
Case n=4: There are 10 possibilities:
.
   o   o   o   o   o---o   o---o   o---o
   |   |   |   |   |       |   |       |
   o   o   o---o   o---o   o   o   o---o
.
   o---o   o---o   o---o   o   o   o   o
             /       \     | / |   | \ |
   o---o   o---o   o---o   o   o   o   o
.
		

Crossrefs

Programs

  • Mathematica
    InverseSeries[x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O[x]^30, x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jul 03 2018, from PARI *)
  • PARI
    Vec(serreverse(x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O(x^30)))

Formula

G.f.: G(x)/x where G(x) is the reversion of x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3).

A381882 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * C(x)) ), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 24, 175, 1428, 12525, 115468, 1103777, 10844715, 108860766, 1111722956, 11514401451, 120666441067, 1277161022725, 13633269293868, 146606818816257, 1586739194404521, 17271207134469417, 188942438655850740, 2076317084779878706, 22909617070555385010
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3*(1-sqrt(1-4*x))/(2*x)))/x)

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * C(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+3,n-k)/(n+2*k+1).
a(n) = binomial(3*(1 + n), n)*hypergeom([(1+n)/2, 1+n/2, -n], [2 + n, 4 + 2*n], -4)/(1 + n). - Stefano Spezia, Mar 09 2025

A094021 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 12, 14, 6, 1, 55, 75, 40, 10, 1, 273, 429, 275, 90, 15, 1, 1428, 2548, 1911, 770, 175, 21, 1, 7752, 15504, 13328, 6370, 1820, 308, 28, 1, 43263, 95931, 93024, 51408, 17640, 3822, 504, 36, 1, 246675, 600875, 648945, 406980, 162792, 42840
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Examples

			From _Andrew Howroyd_, Nov 17 2017: (Start)
Triangle begins:
     1;
     1,     1;
     3,     3,     1;
    12,    14,     6,    1;
    55,    75,    40,   10,    1;
   273,   429,   275,   90,   15,   1;
  1428,  2548,  1911,  770,  175,  21,  1;
  7752, 15504, 13328, 6370, 1820, 308, 28, 1;
(End)
T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB).
		

Crossrefs

Columns k=1..2 are A001764, A026004.
Row sums are A054727.
Cf. A000108.

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k);
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k) = binomial(n, k-1)*binomial(3n-2k-1, n-k)/(2n-k).
G.f.: G=G(t, z) satisfies G^3+(t^3*z^2-t^2*z-3)G^2+(t^2*z+3)G-1=0.
From Peter Bala, Nov 07 2015: (Start)
O.g.f. A(x,t) = revert( x/((1 + x*t)*C(x)) ) with respect to x, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.
Row sums are A054727. (End)

A381775 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 27, 523, 11871, 294668, 7747698, 212054604, 5978347887, 172421233231, 5063192676597, 150872475295522, 4550458484780442, 138652322209300991, 4261638256558924407, 131973650298641750844, 4113788296015093994719, 128973000885015536107140
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^6)/x)^(1/6))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^6) * C(x*A(x)^6).
a(n) = Sum_{k=0..n} binomial(6*n+2*k+1,k) * binomial(6*n+1,n-k)/(6*n+2*k+1).
a(n) = binomial(1 + 6*n, n)*hypergeom([-n, 1/2+3*n, 1+3*n], [2+5*n, 2+6*n], -4)/(1 + 6*n). - Stefano Spezia, Mar 07 2025

A381778 G.f. A(x) satisfies A(x) = (1 + x*A(x)) * C(x*A(x)^2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 9, 60, 474, 4105, 37681, 360122, 3545320, 35705553, 366126614, 3809497971, 40119258081, 426829897847, 4580629916321, 49527776299522, 539025763347730, 5900193301962178, 64913644702760248, 717433047054489969, 7961616716665723173, 88679610762886209459
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(n+k+1, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(n+k+1,n-k)/(n+3*k+1).
Showing 1-10 of 14 results. Next