A381773
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 15, 157, 1913, 25427, 357546, 5229980, 78765793, 1213181593, 19021747383, 302595975502, 4871780511910, 79232327379407, 1299767617080662, 21481625997258747, 357350097625089497, 5978708468143961925, 100537111802285439375, 1698302173359384479307
Offset: 0
A381772
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0
A381774
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 19, 255, 3995, 68344, 1237526, 23316295, 452385355, 8977539540, 181374792040, 3718002102747, 77138798530854, 1616741658725930, 34179703551312530, 728019711835819493, 15608122038151106507, 336551042553481867640, 7293934071668996347055
Offset: 0
A054728
a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).
Original entry on oeis.org
1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
Offset: 0
Janos A. Csirik, Apr 21 2000
- J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
-
a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], ?IntegerQ]/4];
seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
-
A000089(n) = {
if (n%4 == 0 || n%4 == 3, return(0));
if (n%2 == 0, n \= 2);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
};
A000086(n) = {
if (n%9 == 0 || n%3 == 2, return(0));
if (n%3 == 0, n \= 3);
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
};
A001615(n) = {
my(f = factor(n), fsz = matsize(f)[1],
g = prod(k=1, fsz, (f[k,1]+1)),
h = prod(k=1, fsz, f[k,1]));
return((n*g)\h);
};
A001616(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
};
A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
seq(n) = {
my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g);
for (k = 1, bnd, g = A001617(k);
if (g <= n && inv[g+1] == -1, inv[g+1] = k));
return(inv);
};
seq(51) \\ Gheorghe Coserea, May 21 2016
A118343
Triangle, read by rows, where diagonals are successive self-convolutions of A108447.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0
Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 4, 0;
1, 3, 9, 20, 0;
1, 4, 15, 48, 113, 0;
1, 5, 22, 85, 282, 688, 0;
1, 6, 30, 132, 519, 1762, 4404, 0;
1, 7, 39, 190, 837, 3330, 11488, 29219, 0;
1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0;
1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
-
T:= proc(n, k) option remember;
if k<0 or k>n then 0;
elif k=0 then 1;
elif k=n then 0;
else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
-
{T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (k==n): return 0
else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021
A303730
Number of noncrossing path sets on n nodes with each path having at least two nodes.
Original entry on oeis.org
1, 0, 1, 3, 10, 35, 128, 483, 1866, 7344, 29342, 118701, 485249, 2001467, 8319019, 34810084, 146519286, 619939204, 2635257950, 11248889770, 48198305528, 207222648334, 893704746508, 3865335575201, 16761606193951, 72860178774410, 317418310631983, 1385703968792040
Offset: 0
Case n=3: There are 3 possibilities:
.
o o o
/ \ / \
o---o o---o o o
.
Case n=4: There are 10 possibilities:
.
o o o o o---o o---o o---o
| | | | | | | |
o o o---o o---o o o o---o
.
o---o o---o o---o o o o o
/ \ | / | | \ |
o---o o---o o---o o o o o
.
-
InverseSeries[x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O[x]^30, x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jul 03 2018, from PARI *)
-
Vec(serreverse(x*(1 - 2*x)^2/(1 - 4*x + 5*x^2 - x^3) + O(x^30)))
A381882
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * C(x)) ), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 4, 24, 175, 1428, 12525, 115468, 1103777, 10844715, 108860766, 1111722956, 11514401451, 120666441067, 1277161022725, 13633269293868, 146606818816257, 1586739194404521, 17271207134469417, 188942438655850740, 2076317084779878706, 22909617070555385010
Offset: 0
A094021
Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 12, 14, 6, 1, 55, 75, 40, 10, 1, 273, 429, 275, 90, 15, 1, 1428, 2548, 1911, 770, 175, 21, 1, 7752, 15504, 13328, 6370, 1820, 308, 28, 1, 43263, 95931, 93024, 51408, 17640, 3822, 504, 36, 1, 246675, 600875, 648945, 406980, 162792, 42840
Offset: 1
From _Andrew Howroyd_, Nov 17 2017: (Start)
Triangle begins:
1;
1, 1;
3, 3, 1;
12, 14, 6, 1;
55, 75, 40, 10, 1;
273, 429, 275, 90, 15, 1;
1428, 2548, 1911, 770, 175, 21, 1;
7752, 15504, 13328, 6370, 1820, 308, 28, 1;
(End)
T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB).
-
T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
-
T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0];
Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
-
T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k);
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
A381775
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 27, 523, 11871, 294668, 7747698, 212054604, 5978347887, 172421233231, 5063192676597, 150872475295522, 4550458484780442, 138652322209300991, 4261638256558924407, 131973650298641750844, 4113788296015093994719, 128973000885015536107140
Offset: 0
A381778
G.f. A(x) satisfies A(x) = (1 + x*A(x)) * C(x*A(x)^2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 9, 60, 474, 4105, 37681, 360122, 3545320, 35705553, 366126614, 3809497971, 40119258081, 426829897847, 4580629916321, 49527776299522, 539025763347730, 5900193301962178, 64913644702760248, 717433047054489969, 7961616716665723173, 88679610762886209459
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(n+k+1, n-k)/(n+3*k+1));
Showing 1-10 of 14 results.
Comments