A381773
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 15, 157, 1913, 25427, 357546, 5229980, 78765793, 1213181593, 19021747383, 302595975502, 4871780511910, 79232327379407, 1299767617080662, 21481625997258747, 357350097625089497, 5978708468143961925, 100537111802285439375, 1698302173359384479307
Offset: 0
A381774
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 19, 255, 3995, 68344, 1237526, 23316295, 452385355, 8977539540, 181374792040, 3718002102747, 77138798530854, 1616741658725930, 34179703551312530, 728019711835819493, 15608122038151106507, 336551042553481867640, 7293934071668996347055
Offset: 0
A381818
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 12, 97, 903, 9129, 97419, 1080058, 12319200, 143630575, 1704099034, 20507897766, 249734145622, 3071587654688, 38102046141882, 476138815310364, 5988435287060671, 75745116484532586, 962898676577135634, 12295850972794555196, 157649023155654522723, 2028662477759375282902
Offset: 0
A381775
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 27, 523, 11871, 294668, 7747698, 212054604, 5978347887, 172421233231, 5063192676597, 150872475295522, 4550458484780442, 138652322209300991, 4261638256558924407, 131973650298641750844, 4113788296015093994719, 128973000885015536107140
Offset: 0
A381780
G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * C(x*A(x)^3), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 13, 122, 1348, 16317, 209366, 2797461, 38509302, 542367569, 7778173646, 113196865436, 1667497600735, 24816081138489, 372551391235504, 5635157636123317, 85797446797707896, 1313857342649814042, 20222887980813290849, 312694810135597988049, 4854881337618505385339
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+k+1, n-k)/(2*n+3*k+1));
A381785
G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)^2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 7, 45, 335, 2731, 23573, 211741, 1958571, 18529392, 178459000, 1743868792, 17246702932, 172302244669, 1736302280083, 17627794322287, 180133941044517, 1851310247393202, 19123511540724822, 198437973436950204, 2067524004169000212, 21620908821378509071
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(2*k+1, n-k)/(4*k+1));
Showing 1-6 of 6 results.