A381772
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0
A381774
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 19, 255, 3995, 68344, 1237526, 23316295, 452385355, 8977539540, 181374792040, 3718002102747, 77138798530854, 1616741658725930, 34179703551312530, 728019711835819493, 15608122038151106507, 336551042553481867640, 7293934071668996347055
Offset: 0
A381775
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 27, 523, 11871, 294668, 7747698, 212054604, 5978347887, 172421233231, 5063192676597, 150872475295522, 4550458484780442, 138652322209300991, 4261638256558924407, 131973650298641750844, 4113788296015093994719, 128973000885015536107140
Offset: 0
A381782
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * C(x), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 9, 52, 342, 2437, 18331, 143320, 1153308, 9489487, 79470647, 675149665, 5804359859, 50402807459, 441433999816, 3894774605660, 34585663823538, 308867647484634, 2772256164853972, 24994569816424301, 226261997160303326, 2055711320495566962
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n-k+1, k)*binomial(3*n-3*k+1, n-k)/(3*n-k+1));
A381783
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * C(x*A(x)), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 11, 79, 645, 5682, 52643, 505575, 4987933, 50250625, 514787110, 5346336739, 56161123273, 595667090038, 6370314162095, 68616488830785, 743733580011957, 8106009997644507, 88783190884441892, 976705067814061730, 10787334777299825522, 119569153425125828365
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+1, k)*binomial(3*n-2*k+1, n-k))/(3*n+1);
A381786
G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)^3), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 9, 76, 744, 7986, 90836, 1075714, 13122656, 163769229, 2080985186, 26832199993, 350187469872, 4617094718728, 61406081813812, 822834184073768, 11098254270705028, 150555545320009712, 2052839917410937693, 28118478688846531072, 386727880988105218913, 5338557108832658927346
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(3*k+1, n-k)/(5*k+1));
A381819
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 16, 177, 2271, 31731, 468614, 7195295, 113712012, 1837457589, 30220139048, 504212998955, 8513461623355, 145197727340337, 2497695979786842, 43285207907364178, 755005614380697735, 13244500528948104210, 233515959911770430972, 4135792046643993604967
Offset: 0
Showing 1-7 of 7 results.