cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381880 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / C(x) ), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 27, 223, 2052, 20199, 208205, 2219149, 24261279, 270581313, 3066581130, 35216499786, 408919039968, 4792955710138, 56633333886618, 673881539636365, 8067939162382594, 97117925556632184, 1174721577627568371, 14270877151754826473, 174044527062280321368
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3*2*x/(1-sqrt(1-4*x)))/x)

Formula

G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x))^3.
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(4*n-k+2,n-k)/(n+2*k+1).

A381881 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * C(x)) ), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 14, 82, 547, 3958, 30249, 240362, 1966235, 16449495, 140093989, 1210575512, 10587490383, 93540456103, 833619150838, 7484887130882, 67645312129491, 614872423359187, 5617522739173495, 51556112664387720, 475105557839611760, 4394434006611790855
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1-sqrt(1-4*x))/(2*x)))/x)

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * C(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(2*n+2,n-k)/(n+2*k+1).
a(n) = binomial(2*(1 + n), n)*hypergeom([(1+n)/2, 1+n/2, -n], [2 + n, 3 + n], -4)/(1 + n). - Stefano Spezia, Mar 09 2025

A381860 G.f. A(x) satisfies A(x) = (1 + x)^3 * C(x*A(x)), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 12, 55, 327, 2157, 15141, 110853, 836790, 6465309, 50876776, 406335099, 3285202335, 26835060422, 221128733649, 1835973630276, 15344202894457, 128983332603009, 1089803313492966, 9250137181234430, 78837133437062307, 674408139329393187, 5788618956395607745
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+3, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(3*k+3,n-k)/(3*k+1).
D-finite with recurrence -2*n*(2*n+1)*a(n) +3*(n^2+13*n-6)*a(n-1) +3*(69*n^2-221*n+150)*a(n-2) +2*(397*n^2-2431*n+3471)*a(n-3) +6*(225*n^2-1953*n+4079)*a(n-4) +9*(135*n^2-1503*n+4084)*a(n-5) +9*(63*n^2-855*n+2860)*a(n-6) +12*(3*n-22)*(3*n-26)*a(n-7)=0. - R. J. Mathar, Mar 10 2025

A381907 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 4, 25, 197, 1783, 17646, 185622, 2039617, 23149542, 269367631, 3196544816, 38539697456, 470773651286, 5813914938293, 72470441063067, 910587733474165, 11521140613913305, 146659482494039073, 1876975898990490298, 24137070792680577688, 311724732112458291945
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n+3, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n+3,n-k)/(n+3*k+1).
Showing 1-4 of 4 results.