A381879
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / C(x) ), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 3, 16, 106, 788, 6292, 52743, 457946, 4083328, 37174786, 344142192, 3229827900, 30661272627, 293907951057, 2840826401664, 27657352868946, 270968414904700, 2669604470832568, 26431802684789970, 262864480970961882, 2624640191306617088, 26301183967687772360
Offset: 0
A381882
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * C(x)) ), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 4, 24, 175, 1428, 12525, 115468, 1103777, 10844715, 108860766, 1111722956, 11514401451, 120666441067, 1277161022725, 13633269293868, 146606818816257, 1586739194404521, 17271207134469417, 188942438655850740, 2076317084779878706, 22909617070555385010
Offset: 0
A381906
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 15, 100, 787, 6848, 63583, 617350, 6191888, 63650430, 667043379, 7099806346, 76538663840, 833975952491, 9169925032189, 101616966476850, 1133736002540882, 12724529836447420, 143567856744995568, 1627454706916166076, 18526192807286106198, 211694470334287787868
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+2, n-k)/(n+3*k+1));
Showing 1-3 of 3 results.