cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054727 Number of forests of rooted trees with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 2, 7, 33, 181, 1083, 6854, 45111, 305629, 2117283, 14929212, 106790500, 773035602, 5652275723, 41683912721, 309691336359, 2315772552485, 17415395593371, 131632335068744, 999423449413828, 7618960581522348, 58295017292748756, 447517868947619432, 3445923223190363608
Offset: 1

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Crossrefs

Row sums of A094021.

Programs

  • Maple
    ZZ:=[F,{F=Union(Epsilon,ZB),ZB=Prod(Z1,P),P=Sequence(B),B=Prod(P,Z1,P),Z1=Prod(Z,F)}, unlabeled]: seq(count(ZZ,size=n),n=1..20); # Zerinvary Lajos, Apr 22 2007
  • Mathematica
    a[n_] := (3*n-3)!/((n-1)!*(2*n-1)!)*HypergeometricPFQ[{1-2*n, 1-n, -n}, {3/2 - 3*n/2, 2 - 3*n/2}, -1/4]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 05 2012, after formula *)
  • PARI
    N=33; x='x+O('x^N); Vec(serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 25 2016

Formula

a(n) = Sum_{j=1..n} binomial(n, j-1) * binomial(3*n-2*j-1, n-j) / (2*n - j).
G.f. A(x) satisfies 2*A(x)^2=x*(1-sqrt(1-4*A(x)))*(1-A(x)). - Vladimir Kruchinin, Nov 25 2011
From Peter Bala, Nov 07 2015: (Start)
O.g.f. A(x) = revert(x/((1 + x)*C(x))), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.
Row sums of A094021. (End)
Conjecture: -2(37*n-80) *(n-1) *(2*n-1) *a(n) +2*(592*n^3-3056*n^2+5045*n-2665) *a(n-1) +2*(148*n^3-986*n^2+2021*n-1255) *a(n-2) -5*(n-5) *(n-2) *(37*n-43) *a(n-3)=0. - R. J. Mathar, Apr 30 2018
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 8.2246915409778560686084627753... is the real root of the equation 5 - 8*d - 32*d^2 + 4*d^3 = 0 and c = 0.07465927842190452347018812862935237... is the positive real root of the equation -125 + 22376*c^2 + 8880*c^4 + 592*c^6 = 0. - Vaclav Kotesovec, Apr 30 2018

A094040 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k edges.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 14, 12, 1, 10, 40, 75, 55, 1, 15, 90, 275, 429, 273, 1, 21, 175, 770, 1911, 2548, 1428, 1, 28, 308, 1820, 6370, 13328, 15504, 7752, 1, 36, 504, 3822, 17640, 51408, 93024, 95931, 43263, 1, 45, 780, 7350, 42840, 162792, 406980, 648945, 600875, 246675
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Comments

T(n,n-1) yields A001764; T(n,n-2) yields A026004.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  6,  14,  12;
  1, 10,  40,  75,   55;
  1, 15,  90, 275,  429,  273;
  1, 21, 175, 770, 1911, 2548, 1428;
  ...
T(3,1)=3 because the noncrossing forests on 3 vertices A,B,C and having one edge are (A, BC), (B, CA) and (C, AB).
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n-1 then binomial(n,k+1)*binomial(n+2*k-1,k)/(n+k) else 0 fi end: seq(seq(T(n,k),k=0..n-1),n=1..11);
  • Mathematica
    T[n_, k_] := Binomial[n, k+1] Binomial[n+2k-1, k]/(n+k);
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    T(n,k)=binomial(n, k+1)*binomial(n+2*k-1, k)/(n+k);
    for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k)=binomial(n, k+1)*binomial(n+2k-1, k)/(n+k) (0<=k<=n-1).
Showing 1-2 of 2 results.