A182590 Number of distinct prime factors of 2^n - 1 of the form k*n + 1.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 4, 3, 3, 2, 3, 3, 3, 1, 4, 4, 3, 3, 2, 3, 2, 3, 5, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 4, 3, 3, 3, 4, 5, 3, 1, 5, 3, 2, 3, 4, 2, 3, 2, 4, 3
Offset: 2
Keywords
Examples
For n=10 the prime factors of 2^n - 1 = 1023 are 3, 11 and 31, and 11 = n+1, 31 = 3n+1. Thus a(10)=2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 2..1200 (terms 2..200 from Seppo Mustonen, terms 201..786 from Michel Marcus)
- S. Mustonen, On prime factors of numbers m^n+-1, 2010.
- Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy]
Programs
-
Mathematica
m = 2; n = 2; nmax = 200; While[n <= nmax, {l = FactorInteger[m^n - 1]; s = 0; For[i = 1, i <= Length[l], i++, {p = l[[i, 1]]; If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]];}]; a[n] = s;} n++;]; Table[a[n], {n, 2, nmax}]
-
PARI
a(n) = my(f = factor(2^n-1)); sum(k=1, #f~, ((f[k,1]-1) % n)==0); \\ Michel Marcus, Sep 10 2017
Extensions
Name edited by Thomas Ordowski, Sep 19 2017
Comments