A319982 a(n) is the number of integer partitions of n with largest part <= 4 for which the index of the seaweed algebra formed by the integer partition paired with its weight is 0.
1, 1, 1, 2, 3, 2, 3, 3, 4, 3, 3, 2, 4, 2, 3, 1, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0, 4, 2, 3, 0
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- V. Coll, A. Mayers, N. Mayers, Statistics on integer partitions arising from seaweed algebras, arXiv preprint arXiv:1809.09271 [math.CO], 2018.
- V. Dergachev, A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2) (2000) 331-343.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Mathematica
Join[{1, 1, 1, 2, 3, 2, 3, 3, 4, 3, 3, 2, 4, 2, 3, 1}, LinearRecurrence[{0, 0, 0, 1}, {4, 2, 3, 0}, 100]] (* Jean-François Alcover, Dec 07 2018 *)
-
PARI
Vec(x*(1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + x^8 + x^9 - x^11 - x^13 - x^15 - x^19) / ((1 - x)*(1 + x)*(1 + x^2)) + O(x^100)) \\ Colin Barker, Apr 21 2019
Formula
For n > 16: a(n)=4 if 1 == n (mod 4), a(n)=2 if 2 == n (mod 4), a(n)=3 if 3 == n (mod 4), a(n)=0 if 0 == n (mod 4).
From Colin Barker, Apr 21 2019: (Start)
G.f.: x*(1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + x^8 + x^9 - x^11 - x^13 - x^15 - x^19) / ((1 - x)*(1 + x)*(1 + x^2)).
a(n) = a(n-4) for n>20.
(End)
Comments